
www.manaraa.com

University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations 

2019 

Optimization Algorithms for Deep Learning Based Medical Image Optimization Algorithms for Deep Learning Based Medical Image 

Segmentations Segmentations 

Aliasghar Mortazi 
University of Central Florida 

 Part of the Computer Sciences Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

STARS Citation STARS Citation 
Mortazi, Aliasghar, "Optimization Algorithms for Deep Learning Based Medical Image Segmentations" 
(2019). Electronic Theses and Dissertations. 6715. 
https://stars.library.ucf.edu/etd/6715 

This Doctoral 
Dissertation (Open 
Access) is brought 
to you for free and 
open access by 
STARS. It has been 
accepted for 
inclusion in 
Electronic Theses 
and Dissertations by 
an authorized 
administrator of 
STARS. For more 
information, please 
contact 
lee.dotson@ucf.edu. 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F6715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
https://stars.library.ucf.edu/etd/6715?utm_source=stars.library.ucf.edu%2Fetd%2F6715&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


www.manaraa.com

OPTIMIZATION ALGORITHMS FOR DEEP LEARNING BASED MEDICAL IMAGE
SEGMENTATIONS

by

ALIASGHAR MORTAZI
M.S. Sharif University of Technology, 2014

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2019

Major Professor: Ulas Bagci



www.manaraa.com

c© 2019 Aliasghar Mortazi

ii



www.manaraa.com

ABSTRACT

Medical image segmentation is one of the fundamental processes to understand and assess the

functionality of different organs and tissues as well as quantifying diseases and helping treatment

planning. With ever increasing number of medical scans, the automated, accurate, and efficient

medical image segmentation is as unmet need for improving healthcare. Recently, deep learn-

ing has emerged as one the most powerful methods for almost all image analysis tasks such as

segmentation, detection, and classification and so in medical imaging. In this regard, this disser-

tation introduces new algorithms to perform medical image segmentation for different (a) imaging

modalities, (b) number of objects, (c) dimensionality of images, and (d) under varying labeling

conditions. First, we study dimensionality problem by introducing a new 2.5D segmentation en-

gine that can be used in single and multi-object settings. We propose new fusion strategies and

loss functions for deep neural networks to generate improved delineations. Later, we expand the

proposed idea into 3D and 4D medical images and develop a "budget (computational) friendly"

architecture search algorithm to make this process self-contained and fully automated without

scarifying accuracy. Instead of manual architecture design, which is often based on plug-in and

out and expert experience, the new algorithm provides an automated search of successful segmen-

tation architecture within a short period of time. Finally, we study further optimization algorithms

on label noise issue and improve overall segmentation problem by incorporating prior information

about label noise and object shape information. We conclude the thesis work by studying different

network and hyperparameter optimization settings that are fine-tuned for varying conditions for

medical images. Applications are chosen from cardiac scans (images) and efficacy of the proposed

algorithms are demonstrated on several data sets publicly available, and independently validated

by blind evaluations.
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EXTENDED ABSTRACT

Image segmentation plays a vital role in understanding and analysis images, specifically in medical

imaging and radiology, image segmentation can help quantifying diseases, measuring the structures

volumes, and analyzing the organ morphology. For instance ejection fraction (EF) is one of the

vital metric to assess function of the heart from cardiac magnetic resonance imaging (MRI). In

addition, atrial fibrillation (AF) is a cardiac arrhythmia caused by abnormal electrical discharges

in the atrium, often beginning with structural changes in the left atrium (LA). The LA also has an

important role in patients with ventricular dysfunction as a booster pump to augment ventricular

volume. Annotation of cardiac and its substructures from volumetric medical images play an

important role in cardiac assessment. Radiologists need to measure volume of the heart chambers

in different point time (end-systole (ES) and end-diastole (ED)) in order to calculate EF. Also,

physicians need to delineate the LA to get its morphology, essential in detecting and diagnosis AF.

All these delineation and annotation tasks are tedious and prone to intra- and inter-observer errors.

Extensive research and clinical applications have shown that both computed tomography (CT) and

MRI have vital roles in non-invasive assessment of cardiovascular diseases (CVDs). In this thesis,

we focus on this vital clinical problems. In this regard, CT is used more frequently than MRI

due to its fast acquisition and cheaper cost. On the other hand, MRI has an excellent soft tissue

contrast and no ionizing radiation. To propose a generic method appreciate for both modalities, we

propose a series of supervised deep-learning-based segmentation methods for cardiac functionality

assessment. Deep learning has emerged as one of the state-of-the-art methods in different image

processing tasks such as detection ans segmentation. When it comes to design a deep-learning-

based method for medical image analysis, some unique challenges and problems are raised due to

different nature of medical images including image dimensionality, lack of enough data, lack of

enough expert annotations, which are both expensive and time consuming.
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The rest of this dissertation is organized as follows. In Chapter 1 and Chapter 2, the motivation

of the dissertation, the summary of proposed methods and also the related works in the literature

are given. One of the challenges in medical image analysis is dimensionality on these images.

In Chapter 3, a multi-view 2D (2.5D) convolutional neural network (CNN) with a fusion method

(called CardiacNet) is introduced to segment 3D LA and proximal pulmonary veins (PPVs). We

address this unmet clinical need by exploring a new deep learning-based segmentation strategy

for quantification of LA and PPVs with high accuracy and heightened efficiency. Our approach is

based on a multi-view CNN with an adaptive fusion strategy and a new loss function that allows

fast and more accurate convergence of the backpropagation based optimization. As the application,

the anatomical and biophysical modeling of LA and PPVs are chosen because of their importance

for clinical management of several cardiac diseases. MRI allows qualitative assessment of LA and

PPVs through visualization. However, there is a strong need for an advanced image segmentation

method to be applied to cardiac MRI for quantitative analysis of LA and PPVs. After training our

network from scratch by using more than 60K 2D MRI images (slices), we have evaluated our seg-

mentation strategy to the STACOM 2013 cardiac segmentation challenge benchmark. Qualitative

and quantitative evaluations, obtained from the segmentation challenge, indicate that the proposed

method achieved the state-of-the-art sensitivity (90%), specificity (99%), precision (94%), and

efficiency levels (10 seconds in GPU, and 7.5 minutes in CPU).

Another challenge in medical images is having a general method to do segmentation from different

imaging modalities for multiple objects. In Chapter 4, we introduce a multi-planar 2D (2.5D) CNN

method with a fusion method for segmenting seven 3D substructures from both MR and CT images

for the first time. For CT and MRI, we have separately designed three CNNs (the same architectural

configuration) for three planes, and have trained the networks from scratch for voxel-wise labeling

for the following cardiac structures: myocardium of left ventricle (Myo), left atrium (LA), left

ventricle (LV), right atrium (RA), right ventricle (RV), ascending aorta (Ao), and main pulmonary

v



www.manaraa.com

artery (PA). We have evaluated the proposed method with 4-fold-cross-validation on the multi-

modality whole heart segmentation challenge (MM-WHS 2017) dataset. A precision and dice

index of 0.93 and 0.90, and 0.87 and 0.85 were achieved for CT and MR images, respectively.

Cardiac CT volume was segmented in about 50 seconds, with cardiac MRI segmentation requiring

around 17 seconds with multi-GPU/CUDA implementation.

In the Chapter 5, we introduce a method to automatically design the CNN architecture to seg-

ment cardiac substructure from cine-MRI (4D images). Deep neural network architectures have

traditionally been designed and explored with human expertise in a long-lasting trial-and-error pro-

cess. This process requires huge amount of time, expertise, and resources. To address this tedious

problem, we propose a novel algorithm to optimally find hyperparameters of a deep network archi-

tecture automatically. Our proposed method is based on a policy gradient reinforcement learning

for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We

show the efficacy of the proposed method with its low computational cost in comparison with the

state-of-the-art medical image segmentation networks. We also present a new architecture design,

a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed

hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline

architectures. As an application, we train the proposed system on cine cardiac MR images from

Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline seg-

mentation architecture, the resulting network architecture have obtained the state-of-the-art results

in accuracy without performing any trial-and-error based architecture design approaches or close

supervision of the hyperparameters changes.

In the Chapter 6, a new method based on learning a geodesic map is introduced to make deep-

learning segmentor learn from a noisy inexpert annotation. The performance of the state-of-the-art

image segmentation methods heavily relies on the high-quality annotations, which are not easily

affordable, particularly for medical imaging data. To alleviate this limitation, we propose a weakly
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supervised image segmentation method based on a deep geodesic prior. We hypothesize that in-

tegration of this prior information can reduce the adverse effects of weak labels in segmentation

accuracy. Our proposed algorithm is based on a prior information, extracted from an auto-encoder,

trained to map objects’ geodesic maps to their corresponding binary maps. The obtained informa-

tion is then used as an extra term in the loss function of the segmentor. In order to show efficacy of

the proposed strategy, we have experimented segmentation of cardiac substructures with clean and

two levels of noisy labels (L1, L2). Our experiments showed that the proposed algorithm boosted

the performance of baseline deep learning-based segmentation for both clean and noisy labels by

4.4% (without noise), 4.6%(L1 noise), and 6.3%(L2 noise) in dice score, respectively. We also

showed that the proposed method is more robust in the presence of high-level noise due to the

existence of shape priors.

Finally, in Chapter 7, the different optimization method in deep-learning for medical image seg-

mentation are investigated. Based on a cyclic and momentum optimization concept, a new opti-

mization method is introduced in order to decrease computational cost while increasing or main-

taining the accuracy of deep segmentation networks.
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CHAPTER 1: INTRODUCTION

There have been dramatic increase in the number of medical images which are taken for treatment

planning, diagnosis, and other clinical purposes [3]. In the current clinical standards, these mea-

surements (annotations) from medical scans are done by expert physicians. These procedures are

tedious, and prone to intra- and inter-observer errors, which can readily affect the diagnosis and

treatment procedure [4]. The need for using expert-level automated methods (i.e. segmentation)

and software with high efficacy, which can help and ease these tasks and resolve above mentioned

problems, is essential.

Deep learning algorithms, specifically convolutional neural networks (CNN) based methods, have

been proven themselves as powerful methods in image analysis tasks such as detection, classifica-

tion, and segmentation [5, 6, 7, 8]. Like in any other fields, deep learning has been used in medical

image analysis vastly in last few years and it has been a dominant technical method in medical im-

age processing. However, using deep learning for medical image analysis has its own challenges

and limitations too:

• First, the dimensionality of medical images (3D or 4D) demands huge number of parameters

in CNN, causing the need of huge amount of computational resources that are not affordable

with current hardware technology. Standard CNN methods are mostly developed for 2D

images.

• Second, handling different modalities in medical images is a must in many important tasks,

increasing the difficulty of using CNN.

• Third, since variation and unexpected information is quite common in medical images,

there is a need to incorporate expert information into medical decisions to generate optimal
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algorithm.

• Fourth, designing an algorithm to search the optimum CNN architecture is another chal-

lenge with mentioned limitation in medical images.

• Fifth, the optimizers as an engine of deep learning methods need to be investigated and

tuned for medcial image segmentation purposes.

Clinical problem/motivation: In this thesis, we focus on Cardiovascular diseases (CVDs). CVDs

are the first cause of death globally according to the World Health Organization. About 17.7 mil-

lion people died from CVDs in 2015. For evaluating healthiness of heart, usually radiologists

should delineate the different substructures in order to measure the volume of them or to look at

their morphology. Some of these substructures are left ventricle (LV), myocardium of left ventricle

(myo), right ventricle (RV), left atrium (LA) and its pulmonary veins (PVs) and etc. Also, accord-

ing to the World Health Organization [9], cardiovascular diseases (CVDs) are the first cause of

death global which make it essential to have an automated method to help radiologists for cardiac

assessment. In this dissertation, cardiac has been chosen as a target organ for analysis; however,

the proposed methods can be applied to any other organs and image modalities. Following are the

summary of proposed methods:

1.1 2D and 2.5D Segmentation of Medical Images

Background problem definition: Atrial fibrillation (AF) is a cardiac arrhythmia caused by ab-

normal electrical discharges in the atrium, often beginning with hemodynamic and/or structural

changes in the left atrium (LA) [10]. AF is clinically associated with LA strain, and MRI is shown

to be a promising imaging method for assessing the disease state and predicting adverse clinical

outcomes. The LA also has an important role in patients with ventricular dysfunction as a booster
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pump to augment ventricular volume [11]. CT imaging of the heart is frequently performed when

managing AF and prior to pulmonary vein ablation (isolation) therapy due to its rapid processing

time. In recent years, there is an increasing interest in shifting towards cardiac MRI due to its ex-

cellent soft tissue contrast properties and lack of radiation exposure. For pulmonary vein ablation

therapy planning in AF, precise segmentation of the LA and PPVs is essential. However, this task

is non-trivial because of multiple anatomical variations of LA and PPV.

To alleviate the problem defined above and accomplish the segmentation of LA and PPVs from

3D cardiac MRI with high accuracy and efficiency, we propose a new deep CNN. Our proposed

method is fully automated, and largely different from previous methods of LA and PPVs segmen-

tation. The summary of these differences and key novelties of the proposed network architecture,

named as CardiacNet, are listed as follows:

– The proposed method is inspired by SegNet architecture, one of the first segmentor in the

literature , but it is unable to handle unique difficulties of medial scans. For instance, training

CNN from scratch for 3D cardiac MRI is not feasible with insufficient 3D training data (with

ground truth) and limited computer memory. Instead, we parsed 3D data into 2D components

(axial (A), sagittal (S), and coronal (C)), and utilized a separate deep learning architecture

for each component. The proposed CardiacNet was trained using more than 60K 2D slices

of cardiac MR images without relying on a pre-training network of non-medical data, which

was the common method of choice at the time this work was proposed.

– We have combined three CNN networks through an adaptive fusion mechanism where com-

plementary information of each CNN (view) was utilized to improve segmentation results.

The proposed adaptive fusion mechanism is based on a new strategy; called robust region,

definition which measures (roughly) the reliability of segmentation results without the need

for ground truth.
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– We devised a new loss function in the proposed network, based on a modified z-loss, to

providing fast convergence of network parameters than others. This does not only improved

segmentation results due to reliable allocation of network parameters, but it also provides a

significant acceleration of the segmentation process. The overall segmentation process for

a given 3D cardiac MRI takes at most 10 seconds in GPU, and 7.5 minutes in CPU on a

normal workstation, fastest ever segmentation method at the time of relevant publication,

utmost desirable property for clinical adoption of segmentation software.

1.2 Multi-object Segmentation of Multi-Modal Medical Images

Extensive research and clinical applications have shown that both CT and MRI have vital roles

in non-invasive assessment of cardiovascular diseases. CT is used more frequently than MRI due

to its fast acquisition and cheaper cost. On the other hand, MRI has excellent soft tissue contrast

and no ionizing radiation. However, most commercially available image analysis methods have

been either tuned for CT or MRI only. Furthermore, many studies are focused on only one sub-

structure of the heart (for instance, the left ventricle or left atrium). Surprisingly, there is very

little published research on segmenting all substructures of the heart despite the fact that clini-

cally established markers rely on shape, volumetric, and tissue characterization of all the cardiac

substructures. Our study is concerned with this open problem from a machine learning perspec-

tive. We have investigated architectural designs of deep learning networks to solve multi-label and

multi-modality image segmentation challenges within the scope of limited GPU processing power

and limited imaging data.

Contribution: Building up on our proposed CardiacNet architecture, we have extended this seg-

mentation engine in several different ways as follows. (1) A deeper CNN has been utilized as

compared to CardiacNet [12]. (2) We have used both CT and MRI to test and evaluate the pro-
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posed system while CardiacNet uses only MRI [12]. (3) We have extended the binary segmentation

problem into a multi-label segmentation problem. (4) We have devised a rank based adaptive fu-

sion method to assess effective information from different imaging planes for all delineated objects

and select the best fusion strategies for highly accurate and efficient delineation results.

1.3 Automatically Designing CNN Architectures Under Limited Computational Sources

Designing highly accurate and efficient deep segmentation networks is not trivial. It is because

manual exploration of high-performance deep networks requires extensive research by close su-

pervision of human expert (from several months to several years) and huge amount of time and

resources due to training time of networks [8, 12, 13, 14] . Considering that the choice of architec-

ture and hyperparameters affects the segmentation results, it is extremely important to select the

optimal hyperparameters. In this part of the thesis, we address this pressing problem by develop-

ing a proof of concept architecture search algorithm, specifically for medical image segmentation

problems and under budgetary conditions. Our proposed method is generic and can be applied to

any medical image segmentation problem. As a proof concept study, we demonstrate its efficacy

by automatically segmenting heart structures from cardiac MRI scans. The algorithm is based on

policy search and reinforcement learning by utilizing segmentation evaluation metrics as reward

function.

1.4 Incorporating Prior Knowledge and Label Noise in Medical Image Segmentation

Since manual measurements are very expensive, time consuming, and prone to inter- and intra-

observer variations, having an automated, accurate, and efficient segmentation tool is the ultimate

goal in quantitative radiology. In the deep learning era, numerous works have been published,
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showing feasibility of deep learning in segmentation of radiology images. However, most of these

works focus on new network architectures adopted to the medical problem, and they rarely consider

the fundamental challenge of deep segmentation method: availability of precisely annotated data.

This is a huge problem and annotations are often noisy and hard to find large amount of data.

In this part of the thesis, we propose a weakly-supervised segmentation method coupled with a deep

geodesic prior to solve 3D medical image segmentation problem in a robust manner. This prior is

mainly introduced to improve the performance of segmentation networks, more specifically when

the annotations are noisy (i.e., not excellent). We argue that our proposed method is a significant

step toward using inexpert and noisy annotations to train deep models for image segmentation

without sacrificing the accuracy. The deep geodesic prior is specifically designed to put more

attention in constructing accurate edges from weak labels.

1.5 Optimization of Segmentation Networks

Optimization methods, as an engine in deep learning algorithms, play a crucial role in this field.

For past few years, adaptive optimizers such as ADAGrad [15] and ADAM [16] dominated on the

field of deep learning due to their fast convergence. The general idea behind these optimizers

is to consider the history of gradients for updating parameters in the next iteration. As recently

discussed in some studies, adaptive optimizers may converge to different minima than classical

SGD optimizers. This minima may be better in training set, but not necessarily generalizing better

to unseen data as it is discussed by [17]. Some papers tried to tackle this problem by changing

learning rate manually or cyclic in the classical SGD optimizers such as [18] and [19]. These

methods will be discussed in details in the next section.

By getting motivation from the cyclic optimizers, we introduced new optimizer, is called Cyclic
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Learning/Momentum Rate (CLMR), for which both learning rate and momentum rate are changing

cyclic during training. This optimizer has two advantages over adaptive optimizers: First, it is

computationally cheaper than adaptive ones. Second, it generalizes better than adaptive optimizers

(or even similar SGD optimizer).
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CHAPTER 2: RELATED WORKS

There have been large number of literature in recent years trying to solve the segmentation prob-

lem in both natural and medical images area [8, 20, 13, 12, 14, 21]. In practical radiology settings,

segmentation plays a vital role since it is necessary to extract information from region of interest,

measure the volume of specific structures, and analyze morphology of the target/tissue organ in ra-

diological images. In this chapter, we summarize related literature in medical image segmentation

both in pre-deep learning and deep learning eras.

Figure 2.1: Examples of cardiac-MRI and cardiac-CT images with the corresponding contours for
different substructures.

In the pre-deep learning era, statistical shape and atlas-based methods have been the state-of-the-art
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cardiac segmentation approaches due to their ability to handle large shape/appearance variations.

Even now many commercially available tools are based on the methods from this era. One signifi-

cant challenge for such approaches is their limited efficiency: an average of 50 minutes processing

time per volume on a regular workstation [22]. Statistical shape models are faster than atlas-based

methods but a high degree uncertainties in the accuracy of such models is inevitable [23]. Among

pre-deep learning era works, atlas-based methods have been quite popular and favored for many

years. For instance, multi-atlas based whole-heart segmentation using MRI and CT by [24] and

atlas propagation based method using prior information by [25] are a few key examples. Despite

their accuracy, those methods often lack efficiency due to heavy computations on the registration

algorithms (e.g., from 13 minutes to 11 hours of computations reported in the literature). Interested

readers can find a survey paper on cardiac image segmentation methods in [26] for a full list of

methods and their comparative evaluations.

Figure 2.2: The parameters which need to be measured for quantifying heart. Specifically, left
ventricle plays vital role in cardiac assessment. (Source of the figure from [1])

After deep learning spring in 2014, CNN based approaches are replacing the conventional methods

in medical image segmentation fields in general, and cardiac image analysis field in particular. For

instance, in [12], a multi-planar deep learning has been utilized to segment LA and pulmonary

veins from MR images. A recurrent fully convolutional neural network has been proposed to

segment LV from MRI in [27]. In a similar fashion, a deep learning algorithm combined with a
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deformable-model approach was used to segment LV from MRI [28]. In [29], RV segmentation has

been accomplished through a joint localization and segmentation algorithm within a deep learning

framework. To date, the majority of deep learning methods have segmented only one or two

structures of the heart and constrained to only one modality. In natural images some deep learning-

based methods such as SegNet [8] and DeepLab [13] have shown significant improvement over

other methods. SegNet [8] has proposed an encoder-decoder architecture and the information in the

max-pooling layer (in encoder part) are used in decoder part to do unpooling and resizing. DeepLab

[13] has introduced a new convolution kernel, named atrous convolution, which can capture more

informative features from images when combining with features obtained from regular convolution

kernel. Then, U-Net [14] was introduced based on the encoder-decoder architecture by adding

skip connections from the encoder to decoder part in architecture to make flow of information

easier. After that, Tiramisu [21] was proposed based on the DenseNet [30] by adding local skip

connections inside of each block in encoder and decoder parts in addition to global connections

from decoder to encoder. PAN was introduced to segment pancreas from CT images by using

generative adversarial network to learn high-level consistencies in images, in addition to pixel-

wise information [31].

The state-of-the-art CNN-based segmentation methods have very similar fixed network archi-

tectures and they all have been designed with a trial-and-error basis. SegNet [8], CardiacNet

[12, 32, 33], and U-Net [14] are some of the notable approaches in the literature. To design such

segmentstion networks, experts have often large number of choices involved in design decisions,

and manual search process is significantly guided by intuition. To address this issue, there is a

considerable interest recently for designing the network architecture automatically. Reinforcement

Learning (RL) [34] and evolutionary based algorithms [35] are proposed to search the optimum

network hyperparameters. Such methods are computationally expensive and require a large num-

ber of processors (as low as 800 GPUs in Google’s network search algorithm [34]) and may not be
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doable for a widespread and more general use. Instead, in this dissertation, we propose a concep-

tually simple and very efficient network optimization search algorithm based on a policy gradient

(PG) algorithm. PG is one of the successful algorithms in robotics field [36, 37] for learning sys-

tem design parameters. Another example is by Zoph and Le [34] where authors used LSTM (long

short term memory) to learn the hyperparameters of the CNN and the PG was used to learn the

parameters of the LSTM. Learning parameters of LSTM need considerable amount of resources

as it is discussed in [34]. Unlike that indirect parameter estimation, in this dissertation we propose

a PG algorithm to directly learn network hyperparameters. Our proposed approach to learn CNN

architecture is inspired by [36] and it has been adapted to deep network architecture design for

performing image segmentation tasks with high accuracy. In this study, to make the whole system

economical to implement for wide range of applications, search space is significantly restricted

[38].

In the another area to do segmentation, the shape prior was used in the segmentation engine.

The literature for integrating shape priors into image segmentation is vast, mostly from pre-deep

learning era. A mainstream approach is to construct a shape prior from a set of training samples

represented implicitly by signed distance functions citekurugo,levelset. In the deep learning era,

Zotti et al. [39] used image registration to align shape priors and created atlas(es) to guide seg-

mentation. Simply, authors have used this atlas for adding an extra loss term to the segmentation

network. Modeling a prior (in shape or appearance) from medical images is still a challenging

task due to highly diverse appearance, shape, and size of the anatomical objects. The first attempt

to model shape prior with deep features was done by training an auto-encoder (AE) for creating

features from the labels [40]. The AE was trained to reconstruct the binary input images in its out-

put with a fully-connected layer as a bottleneck to capture the shape features. Then, these shape

features were integrated into the segmentation network through an appropriate loss term. While

the work in [40] is promising, it is not entirely clear whether the local anatomical variations are
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captured in detail. We hypothesize that, if modeled correctly, prior information can lead to a more

robust segmentation even when the labels are noisy (i.e., labels annotated by non-experts). To test

this hypothesis, we propose a novel method for learning the prior from the geodesic maps of mul-

tiple objects. Then, an AE-like network is used to generate the original binary images from their

corresponding geodesic maps. Finally, the features from the trained AE are used as a prior to be

integrated into the segmentor for better guidance and performance improvement [41].

Optimizing parameters of neural networks have been challenging from beginning due to huge num-

ber of parameters need to be trained. Generally, the current optimizers can be categorized regarding

a fixed learning rate (LR) and momentum rate (MR) or having adaptive LR and MR. Gradient

Descent (GD), Stochastic Gradient Descent (SG) and Mini-batch gradient descent were first op-

timizers used for training neural networks. The updating rule for GD, SGD, and mini-batch GD

by can be considered same by choosing X and Y as whole samples in dataset, a single sample,

and a batch of samples respectively. The Momentum optimizer [42] speed up the convergence of

optimization by considering the value of all past iterations with a rate which called momentum.

In Momentum optimizer the past iterations don’t play any role in cost function and cost function

is only calculated regarding current iteration. Nesterov accelerated gradient [43] (NAG) is the

first optimizer which accelerate the convergence by including information of previous iterations in

calculating gradient of cost function.

One of the major drawbacks of optimizer with fixed LR and MR was lacking of considering the

information of gradient of last iterations in changing (adapting) the LR and MR. i.e that’s good

idea to increase the LR in dimension with low slope in order to increase speed of convergence; or

decrease LR in dimension with high slope to prevent fluctuation around minimum point.

ADAGrad [15] is one of fist adaptive LR optimizer which used in deep learning area and it adapts

the learning rate for each parameter in network by dividing gradient of each parameter by its sum
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of the squares of gradient One of the drawback of Adagrad is gradient vanishing due to accumu-

lation of all past square gradient. ADADelta and RMSProp solved this problem by considering

a limited window for summing past square gradient (instead of all of them). The most popular

optimizer which is used in most of the deep learning application is ADAptive Momentum opti-

mizer [16] (ADAM). ADAM optimizer updating rule used past squared gradient (as scale) and

also like momentum, it keeps exponentially decaying average of past gradient.

One of the disadvantages of adaptive learning methods is computational cost. Since, they are re-

quired to calculate and keep all the past gradients and their squares to update next parameters.

Also, as it is discussed by [17] the adaptive learning optimizer converge to different minima point

in comparison with fixed learning rate optimizers which is worse in generalization. Cyclic Learn-

ing Rate [18] (CLR) is a new method to change the learning rate during training which need no

computational cost and it is based on original idea of fixed learning optimizer. The idea behind

CLR is changing global LR in cyclic manner in an interval can be beneficial. i.e as it is suggested

by [18].
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CHAPTER 3: 2D AND 2.5D SEGMENTATION OF MEDICAL IMAGES

The proposed algorithms in this chapter and their results are published in the following papers:

– Aliasghar Mortazi, Rashed Karim, Kawal Rhode, Jeremy Burt, Ulas Bagci (2017)

CardiacNet: Segmentation of Left Atrium and Proximal Pulmonary Veins from MRI

Using Multi-view CNN. In Medical Image Computing and Computer-Assisted Inter-

vention (MICCAI 2017). Lecture Notes in Computer Science, vol 10434. Springer,

Cham.

– Aliasghar Mortazi, Jeremy Burt, Ulas Bagci, (2017) Deep Learning for Cardiac

MRI: Automatically Segmenting Left Atrium and Proximal Veins with Human Level

Performance, in Annual Meeting of the Radiological Society of North America

(RSNA) 2017.

– Aliasghar Mortazi, Jeremy Burt, and Ulas Bagci. (2017) Machine Learning for

Cardiac MRI: Automated Mapping of Left Atrium and Pulmonary Veins with Human

Level Performance, in North American Society for Cardiovascular Imaging (NASCI)

2017. (American Heart Association(AHA) and CVRI Young Investigator Award fi-

nalist).

3.1 Overview

The proposed pipeline (called CardiacNet) for deep learning based segmentation of the LA and

PPVs is summarized in Figure 3.1. We used the same CNN architecture for each view of the 3D

cardiac MRI after parsing them into axial, sagittal, and coronal views. The rationale behind this
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decision is based on the limitation of computer memory and insufficient 3D data for training on 3D

cardiac MRI from scratch, common problems in radiology. Instead, we reduce the computational

burden of the CNN training by constraining the problem into a 2D domain. The resulting pixel-

wise segmentations from each CNN are combined through an adaptive fusion strategy. The fusion

operation is designed to maximize the information content from different views. The details of the

pipeline are given in the following subsections.

Figure 3.1: High-level overview of the proposed multi-view CNN architecture.

3.2 Multi-View CNN

We constructed an encoder-decoder CNN architecture, similar to that of Noh et al. [44]. The

network includes 23 layers (11 in encoder, 12 in decoder units). Two max-pooling layers in encoder

units reduce the image dimensions by half, and a total of 19 convolutional (9 in encoder, 10 in

decoder), 18 batch normalization, and 18 ReLU (rectified linear unit) layers are used. Specific to

the decoder unit, two upsampling layers are used to convert the images back into original sizes.

Also, the kernel size of all filters are considered as 3×3. The final layer of the network includes a

softmax function (logistic) for generating a probability score for each pixel. Details of these layers,

and associated filter size and numbers are given in Figure 3.2.
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3.3 z-Loss Function

We used a new loss function that can estimate the parameters of the proposed network at a much

faster rate, a critical necessity in meddical field. We trained, the architecture in an end-to-end

mapping with a loss function L(o,c) =softplus(a(b− zc))/a, called z-loss [45], where o denotes

output of the network, c denotes the ground truth label, and zc indicate z-normalized label, obtained

as zc = (oc−µ)/σ where mean (µ) and standard deviation σ are obtained from o. z-loss is simply

obtained with the reparametrization of soft-plus (SP) function (i.e., SP(x) = ln(1+ ex)) through

two hyperparameters: a and b. Herein, we kept these hyperparameters fixed, and trained the

network with a reduced z-loss function. The rationale behind this choice is the following: the z-

loss function provides an efficient training performance as it belongs to spherical loss family, and

it is invariant to scale and shift changes in the output, avoiding output parameters to deviate from

extreme values.

3.4 Training CardiacNet

3D cardiac MRI images along with its corresponding expert annotated ground truths were used to

train the CNN after the images are parsed into three views (A, S, C). Data augmentation has been

conducted on the training dataset with translation and rotation operation as indicated in Table 3.1.

Obtained 3D images were parsed into A, S, and C views, and more than 60K 2D images were

obtained to feed training of the CNN (approximately 30K for A and C views, around 11K for S

view). As a preprocessing step, all images have undergone anisotropic smoothing filtering and

histogram matching.
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Figure 3.2: Details of the CNN architecture. Note that image size is not necessarily fixed for each
view’s CNN.

Figure 3.3: Connected components obtained from each view were computed and the residual vol-
ume (T-NT) was used to determine the strength for fusion with the other views.

3.5 Multi-View Information Fusion

Since cardiac MRI is often not reconstructed with isotropic resolution, we expect varying segmen-

tation accuracy in different views. A scan from axial, sagittal, and coronal view are shown in first
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row of Figure 3.4. In order to alleviate potential adverse effects caused by non-isotropic spatial

resolutions of a particular view, it is desirable to reduce the contribution of that view into final

segmentation. We have achieved this with the adaptive fusion strategy as described next. For a

given MRI volume I, and its corresponding segmentation o, we proposed a new strategy, called

robust region, that roughly determined the reliability of the output segmentation o by assessing

its object distribution. To achieve this, we hypothesize that the output should include only one

connected object when the segmentation is successful, and if there is more than a single connected

object available, these can be considered as false positives. Accordingly, respective performance

of segmentation performance in A, S, and C views can be compared and weighted. To this end, we

utilized connected component analysis (CCA) to rank output segmentations and reduced the contri-

bution of CNN for a particular view when false positive findings (non-trusted objects/components)

were large and true positive findings (trusted object/component) were small. Figure 3.3 describes

the adaptive fusion strategy as CCA(o) = {o1, . . . ,on|∪oi = o, and ∩oi = φ}. Thus, the contribu-

tion of each view’s CNN is computed based on a weighting w = maxi{|oi|}/∑i |oi|, indicating that

higher weights are assigned when the component with largest volume dominated the whole output

volume. Note that this block has been used only in the test phase. Complementary to this strategy,

we also use simple linear fusion of each views for comparison (See Experimental Results section).

3.6 Experimental Results

Data sets: Thirty cardiac MRI data sets were provided by the STACOM 2013 challenge organiz-

ers [22]. Ten training data included ground truth labels, and the remaining twenty were provided

as a test set. It is important to note that not the complete PVs are considered in the segmentation

challenge, but only the proximal segments of the PVs up to the first branching vessel or after 10

mm from the vein ostium were included in the segmentation. MR images were obtained from
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a 1.5T Achieva (Philips Healtcare, The Neatherlands) scanner with an ECG-gated 3D balanced

steady-state free precession acquisition [22] with TR/TE= 4.4/2.4 ms, and Flip-angle=90o. Typ-

ical acquisition time for the cardiac volume imaging was 10 minutes. In-plane resolution was

recorded as 1.25 × 1.25 mm2, slice thickness was measured as 2.7 mm. Further details on the data

acquisition, and image properties can be found in [22].

Table 3.1: Data augmentation parameters and number of training images

Data augmentation
Methods Parameters

(x+ trans,y = 0), transε[−20,20]
Translations

(x = 0,y+ trans), transε[−20,20]
Rotation k×45,k ε[−2,−1,1,2]

Training images
CNN # of images Image size

Sagittal 10,800 320 × 320
Axial 28,800 110 × 320

Coronal 28,800 110 × 320

Evaluations. For evaluation and comparison with other state-of-the-art method, we have used

the same evaluation metrics, provided by the STACOM 2013 challenge: Dice index and surface-

to-surface (S2S) metrics. In addition, we calculated Dice index and S2S for the LA and PPVs

separately. To provide a comprehensive evaluation and comparisons, sensitivity (true positive rate),

specificity (true negative rate), precision (positive prediction value), and Dice index values for the

combined LA and PPVs were included too. Table 3.2 summarizes all these evaluation metrics

along with efficiency comparisons where we tested our algorithm both in GPU and CPU. LTSI-

VRG, UCL-1C, and UCL-4C are three atlas-based method which their output were published

publicly as a part of STACOM 2013 challenge. Also, OBS-2 is the result from human observer

which its output was available as a part of STACOM 2013 challenge. 8 out of 10 subjects were

used for training purpose and 2 of them were used for validation. Also, 20 subjects were used in
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the test phase for evaluation. In almost all evaluation metrics in the test set, the proposed method

out-performed the state-of-the-art approaches by large margins. Table 3.2 indicates the results

of varying combinations baselines methods such as single CNN in particular view (i.e,. S_CNN

for sagittal view), with simple linear fusion F-CNN, adaptive fusion AF-CNN, and with the new

loss function AF-CNN-SP. In AF-CNN, the loss function was cross-entropy. The best method

in the challenge data set was reported to have a Dice index of 0.94 for LA and 0.65 for PPVs

(combined LA and PPVs was less than 0.9). In our proposed method, the Dice index for combined

LA and PPVs was well above 0.90. For efficiency comparison, our approach only takes at most

10 seconds on a Nvidia TitanX GPU and 7.5 minutes in a CPU with Octa-core processor (2.4

GHz) configuration. The method in [46] required 30-45 minutes of processing times (with Quad-

core processor (2.13 GHz)). For qualitative evaluation, we have used surface rendering of output

segmentations compared to ground truth in Figure 3.4. Sample axial, sagittal, and coronal MRI

slices are given in the same figure with ground truth annotations overlaid with the segmented LA

and PPVs.

Table 3.2: The evaluation metrics for state-of-the-art and proposed methods. ∗∗: the running time
on CPU ∗: the running time on NVIDIA TitanX GPU

Methods LTSI_VRG UCL_1C UCL_4C OBS_2 A_CNN C_CNN S_CNN F-CNN AF-CNN AF-CNN-SP
Dice(LA) 0.910 0.938 0.859 0.908 0.903 0.804 0.787 0.873 0.928 0.951

Dice(PPVs) 0.653 0.609 0.646 0.751 0.561 0.478 0.398 0.506 0.616 0.685
S2S(LA) in mm 1.640 1.086 2.136 1.538 1.592 2.679 2.853 1.771 1.359 1.045

S2S(PPVs) in mm 1.994 1.623 2.375 1.594 1.928 2.878 3.581 2.121 1.718 1.427
Sensitivity 0.926 0.828 0.832 0.894 0.806 0.658 0.663 0.743 0.883 0.895
Specificity 0.998 0.999 0.999 0.997 0.996 0.994 0.997 0.997 0.999 0.999
Precision 0.815 0.957 0.814 0.936 0.905 0.774 0.880 0.953 0.936 0.938
Dice (all) 0.862 0.886 0.819 0.911 0.845 0.695 0.734 0.820 0.887 0.905
Running 3100∗∗ 1200∗∗ 1200∗∗ - 170∗∗ 170∗∗ 155∗∗ 450∗∗ 450∗∗ 450∗∗

Time (sec) - - - - 3.5∗ 3.5∗ 3∗ 10∗ 10∗ 10∗
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Figure 3.4: First row shows sample MRI slices from S, C, and A views (red contour is ground-truth
and green one is output of proposed method). Second-to-fifth rows: 3D surface visualization for
the ground-truth and the output generated by the proposed method w.r.t simple fusion (F), adaptive
fusion (AF), and the new loss function (SP).
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Figure 3.5: Box plots for different metrics (sensitivity, precision, and Dice index) for state-of-the-
art methods (LTSI_VRG, UCL_1C, UCL_4C, OBS_2) and proposed methods (F_CNN, AF_CNN,
AF_CNN_SP) on the LA segmentation benchmark

3.7 Discussions and Concluding Remarks

The advantage of CardiacNet is accurate and efficient method for both LA and PPVs segmentation

in atrial fibrillation patients: combined segmentation of the LA and PPVs. Precise segmentation

of the LA and PPVs is needed for ablation therapy planning and clinical guidance in AF patients.

PPVs have a greater number of anatomical variations than the LA-body, leading to challenges with

accurate segmentation. Joint segmentation the LA and PPVs is even more challenging compared

to sole LA-body segmentation. Nevertheless, with all available quantitative metrics, the proposed

method has been shown to greatly improve the segmentation accuracy on the existing benchmark

for LA and PPVs segmentation. The benchmark evaluation has also allowed the method and its
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variations to be cross-compared on the same dataset with other existing methods in literature.

Despite the efficacy of the proposed method, there are several possibilities that our work can be

improved. Firstly, the new method should be tested, evaluated, and validated our in more diverse

data sets from several independent cohorts, and at the different imaging resolution and noise levels,

and even across different scanner vendors. Secondly, extending our framework into 4D (i.e motion)

analysis of cardiac images can be possible by extending our parsing strategy. Thirdly, we aim to

explore the feasibility of training completely 3D cardiac MRI based on the availability of multiple

GPUs, or developing sparse CNNs to alleviate the segmentation problem. Fourthly, with low-

dose cardiac CT technology on the rise; it is desirable to have similar network structure trained on

CT scans. This notable efficacy of the deep learning strategies presented in this work promises a

similar performance on CT scans.

In conclusion, the proposed method has utilized the strength of deeply trained CNN to segment

LA and PPVs from cardiac MRI. We have shown combining information from different views of

MRI by using an adaptive fusion strategy and a new loss function improves segmentation accuracy

and efficiency significantly.
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CHAPTER 4: MULTI-OBJECT SEGMENTATION OF MULTI-MODAL

MEDICAL IMAGES

The proposed algorithms in this chapter and their results are published in the following papers:

– Aliasghar Mortazi, Jeremy Burt, Ulas Bagci (2018) Multi-Planar Deep Segmenta-

tion Networks for Cardiac Substructures from MRI and CT. In: Pop M. et al. (eds) Sta-

tistical Atlases and Computational Models of the Heart. ACDC and MMWHS Chal-

lenges. STACOM 2017. Lecture Notes in Computer Science, vol 10663. Springer,

Cham (challenge).

– Xiahai Zhuang, Lei Li, Christian Payer, Darko Štern, Martin Urschler, Mattias P.

Heinrich, Julien Oster, Chunliang Wang, Örjan Smedby, Cheng Bian, Xin Yang,

Pheng-Ann Heng, Aliasghar Mortazi, Ulas Bagci, and etc. “Evaluation of algorithms

for multi-modality whole heart segmentation: An open-access grand challenge,” Med-

ical Image Analysis, vol. 58, pp. 101537, 2019.

4.1 Proposed CNN Architecture

Our proposed method is called multi-object 2.5D (multi-planar) convolutional neural networks

(MO-MP-CNN), and its modules are illustrated in Figure 4.1. MO-MP-CNN takes 3D CT or MR

scans as an input and parses them into three perpendicular planes: Axial (A), Coronal (C), and

Sagittal (S). For each plane (and modality), a 2D CNN is trained to label pixels. CNNs have

been trained from scratch to adapt into CT and MRI context. After training each of the 2D CNNs

separately, adaptive fusion strategy is utilized by combining the probability maps of each of the
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CNNs. The details of the CNN and adaptive fusion method are explained in the following.

Figure 4.1: Overview of Mo-MP-CNN with adaptive fusion.

Table 4.1: Data augmentation parameters.

Data augmentation
Methods parameters
Zoom in Scale ε[1.1,1.3]
Rotation k×45,k ε[−1,1]

Training images (CT)
CNN # of images Image size

Sagittal 40,960 350×350
Axial 21,417 350×350

Coronal 40,960 350×350
Training images (MRI)

CNN # of images Image Size
Sagittal 20,074 288×288
Axial 29,860 288×160

Coronal 19,404 288×288

The proposed encoder-decoder based network architecture is illustrated in Figure 4.2. Twelve

convolution layers have been used in encoder and decoder separately. In the encoder part, two
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max-pooling layers have been used to reduce the dimension of the image by half and in decoder

part two upsampling layers (bilinear interpolation) have been used to get the image back to its

original size. The size of all filters were set as 3×3. Each convolution layer is followed by a batch

normalization and Rectified Linear Unit (ReLU) as an activation function. The number of filters in

the last convolution layer is equal to the number of classes (i.e., 8 (background+7 objects)) and is

followed by a softmax function to make a final probability map for each object. Similar to [12], the

simplified z-loss [45] function has been used to train the network. To provide a sufficient number

of training images for the networks, data augmentation has been applied to the training images by

rotation and zoom-in operations. The details of the augmentation and the number of data for each

CNN are summarized in Table 4.1.

Figure 4.2: Details of the CNN architecture. Note that image size is not necessarily fixed for each
plane’s CNN.
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4.2 Multi-Object Adaptive Fusion

An adaptive fusion strategy has been extended in the way that it can be applied to multi-object

segmentation instead of binary segmentation. Let I and P denote an input and output image pair,

where output is the probability map of the CNN. Also, let the final segmentation be denoted as

o. As shown in Figure 4.3, o is obtained from the probability map P by taking the maximum

probability of each pixel in all classes (labels). Then, a connected component analysis (CCA) is

applied to o to select reliable and unreliable regions, where unreliable regions are considered to

come from false positive findings. Although this approach gives a “rough" estimation of the object,

this information can well be used for assessing the quality of segmentations from different planes.

If it is assumed that n is the number of classes (structures) in the images and m is the number

of components in each class, then connected component analysis can be performed as follows:

CCA(o) = {o11, . . . ,onm| ∪ oi j = o, and o11, . . . ,onm| ∩ oi j = φ}. For each class n, we can now

assign reliability parameters (weights) to increase the influence of planes that have more reliable

(trusted) segmentations as follows: w = ∑i{max j{|o j|}}/∑i j |oi j|, where w indicates a weight

parameter. In our interpretation of the CCA, the difference between trusted and non-trusted regions

have been used to guide the reliability of the segmentation process: the higher the difference , the

more reliable the segmentation (See Figure 4.3, weight distribution w.r.t the difference). In test

phase, we have simply used those predetermined weights from the training stage.
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Figure 4.3: Connected components obtained from each plane were computed and the residual
volume (T-NT) was used to determine the strength for fusion with the other planes.

4.3 Experimental Results

Dataset and preprocessing: For the experiments and evaluations of the proposed method, we

used the STACOM 2017 for whole heart segmentation challenge dataset, containing 20 MR and

20 CT images for training (with ground-truth) and 40 test images without ground-truth for each

modality [47]. We performed a 4 fold cross-validation on the dataset such that 15 subjects were

used for training and 5 subjects have been chosen for validation for each fold. The CT images were

obtained from routine cardiac CT angiography and to cover the whole heart, extending from the
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upper abdomen to the aortic arch. Axial in-plane resolution was 0.78×0.78 mm and slice thickness

was 1.6 mm. The MR images were acquired by using 3D balanced steady state free precession (b-

SSFP) sequences, with about 2 mm acquisition resolution in each direction. In preprocessing step,

anisotropic smoothing filtering was applied to both CT and MR images prior to segmentation.

In addition, histogram matching was used for MR images to alleviate intensity non-standardness

issues.

Figure 4.4: First two rows show axial, sagittal, and coronal planes of the CT (first three columns)
and MR images (last three columns), annotated cardiac structures, and their corresponding surface
renditions (last two rows). Red arrows indicate some of mis-segmentations.

Evaluation: Five metrics were assessed: sensitivity, specificity, precision, dice index (DI), and

surface to surface (S2S) distance. A summary of the findings for each structure and also for the

whole heart are reported in Table 4.2. The WHS is the average of all structures. The box-plot

for sensitivity, precision, and DI for both CT and MRI and for all structures are shown in Figure

4.5. The qualitative results (including difficult cases for segmentation) for CT and MR modalities
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are illustrated in Figure 4.4. Algorithms were implemented on the Nvidia TitanXp GPUs using

Tensorflow [48]. The average time for segmenting the whole heart from the cardiac CT volume

using three TitanXp GPUs was about 50 seconds. Segmenting using the cardiac MR volume took

about 17 seconds. For comparison, the time on the Intel Xeon Processor E5-2620 with 8 cores for

CT images was about 30 minutes and for MR images was about 8 minutes.

Table 4.2: Quantitative evaluations of the proposed segmentation method for both CT and MRI are
summarized.

MRI CT
Structures: Myo LA LV RA RV Aorta PA WHS Myo LA LV RA RV Aorta PA WHS
Sensitivity 0.816 0.856 0.928 0.827 0.878 0.728 0.782 0.831 0.888 0.903 0.918 0.835 0.872 0.86 0.783 0.866
Specificity 0.999 0.999 0.999 0.998 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999
Precision 0.842 0.88 0.936 0.909 0.846 0.873 0.791 0.868 0.912 0.931 0.944 0.914 0.911 0.983 0.912 0.929

DI 0.825 0.887 0.932 0.874 0.884 0.772 0.784 0.851 0.898 0.925 0.93 0.877 0.888 0.909 0.851 0.897
S2S(mm) 1.152 1.130 1.084 1.401 1.825 1.977 2.287 1.551 0.903 1.386 1.142 2.019 1.895 1.023 1.781 1.450

4.4 Discussions and Concluding Remarks

The main goal of the current study is to develop a framework for accurate and efficient segmenta-

tion of all cardiac substructures from both cardiac CT and MR images. The main strength of the

proposed method is to train multiple CNNs from scratch and to allow an adaptive fusion strategy

for information maximization in pixel labeling despite the limited data and hardware support. Our

findings indicate that MO-MP-CNN can be used as an efficient tool to delineate cardiac structures

with high precision, accuracy, and efficiency.

Technically, one may question why we did not employ a completely 3D CNN approach instead

of utilizing a multi-planar fusion of multiple 2D CNNs. As discussed in [12], the lack of a large

number of 3D images restricts the depth of CNN training, which may result in sub-optimal imple-

mentation. Hence, training large number of 2D slices is much more feasible than utilizing a 3D

approach with the current algorithm. In the instance of plentiful GPU processing power and 3D
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imaging data, training would be optimized using a 3D CNN.

Another limitation of our work stems from the use of the softmax function in the last layer of the

proposed network. To explore whether the information loss due to class normalization in this step

is significant, further research should be undertaken using information from the layer before the

softmax in fusion part and with comparison to the current system. Finally, further work is needed

to establish comparative evaluation of different deep neural network approaches such as ResNet,

U-net, and others. While deeper networks are desirable to achieve higher precision in segmentation

tasks, lack of 3D data is a significant limitation for training such a system. Data augmentation and

transfer learning have been shown to adequately address such challenges to a certain degree, but

there is currently no research proving the optimality of such networks relative to the availability of

data at hand.
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Figure 4.5: Box plots for sensitivity, precision, and Dice index for each structure and WHS. Top
figure is for CT dataset and bottom figure is for MR dataset
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CHAPTER 5: AUTOMATICALLY DESIGNING CNN ARCHITECTURES

UNDER LIMITED COMPUTATIONAL SOURCES

The proposed algorithms and their results are published in the following paper:

– Aliasghar Mortazi, Ulas Bagci (2018) Automatically Designing CNN Architectures

for Medical Image Segmentation. In: Shi Y., Suk HI., Liu M. (eds) Machine Learning

in Medical Imaging. (MLMI), MICCAI, 2018. Lecture Notes in Computer Science,

vol 11046. Springer, Cham.

5.1 Overview

The overview of the proposed method is illustrated in Figure 5.1. The hyperparameters of the

network are considered as policies to be learned during PG training. To our best of knowledge, this

is the first study to find optimum hyperparameters of a given network with policy gradient directly.

Moreover, our proposed baseline architecture of densely connected encoder-decoder CNN and the

use of Swish function as an alternative to ReLU are novel and superior to the existing systems.

Lastly, our study is the first medical image segmentation work with a fully automated algorithm

that discovers the optimal network architecture.

5.2 Policy Gradient

Policy gradient is a class of reinforcement learning (RL) algorithms and relied on optimization of

parametrized policies with respect to a expected return (reward) [49]. Unlike other RL methods

(such as Q-Learning), the PG learns the policy function directly to maximize receiving rewards.
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Figure 5.1: Overview of proposed method. First, the policy is initialized randomly and then P
perturbation are generated. The network is trained with each perturbation and reward from each
perturbation is calculated. The policy will be updated accordingly and the process will be repeated
until no significant changes in the reward. Reward is simply set as dice coefficient for evaluating
how good the segmentation is.

In our setting, we consider each hyperparameter of the network as a policy, which can be learned

during network training. Assume that we have a policy π0 = {θ1,θ2, . . . ,θN}, indicating the hyper-

parameters of the network, where N is the number of hyperparameters (dimensions). Our objective

is to learn these hyperparameters (i.e., policies) by maximizing a receiving reward. In segmentation

task, this reward can be anything measuring the goodness of segmentations such as dice index and

Hausdorff distances. Once we randomly initialize hyperparameters, we generate new policies by

randomly perturbing the policies in each dimension. Note that each dimension represents an explo-

ration space for hyperparameters such as filter width, hight, and etc. Let P(π0) = {π1,π2, . . . ,πp}

be p random perturbation generated near π0, represented as πi = π0 +∆i for i ∈ {1,2, . . . , p}. For

each random perturbation, ∆i = {δ 1,δ 2, . . . ,δ N}, we assume that δ d is randomly chosen from

{−εd,0,+εd} for every d ∈ {1,2, . . . ,N} where epsilon is derivative of a function y with respect

to x (Later we will define x and y for each dimension in Section 5.4).

The network is trained with these p generated policies, and reward (segmentation outcome) is ob-
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tained for each policy. Finally, the maximal reward (i.e., highest dice coefficient) is determined to

set the optimal network architecture hyperparameters accordingly. To estimate the partial deriva-

tive of the policy function for each dimension, each perturbation is grouped to non-overlapping

categories of negative perturbation, zero perturbation, and positive perturbation: Cd
−, Cd

0 , and Cd
+

such that πd
i ∈ {Cd

−,C
d
0 ,C

d
+}. The perturbations are generated to make sure each category has ap-

proximately p/3 members. Then, the absolute reward for each category is calculated as a mean of

all the rewards Aved = {Aved
−,Aved

0,Aved
+} for each dimension d. Based on this average reward,

the initial policy is updated accordingly:

π
d
0,new =


πd

0 − εd if Aved
− > Aved

0 and Aved
− > Aved

+

πd
0 +0 if Aved

0 ≥ Aved
− and Aved

0 ≥ Aved
+

πd
0 + εd if Aved

+ > Aved
0 and Aved

+ > Aved
−

(5.1)

The pseudo-code for policy gradient is given in Algorithm 1.

Algorithm 1 Policy Gradient’s algorithm
1: Initialize π0 randomly
2: for e=1:epochs do
3: Generate p randomly perturbation of P(π0) = {π1,π2, . . . ,πp}
4: for i=1:p do
5: Train network with policy πi
6: Calculate reward
7: for d=1:N do
8: Aved

+← Average rewards for Cd
+

9: Aved
0 ← Average rewards for Cd

0
10: Aved

−← Average rewards for Cd
−

11: Update πd
0,new based on Equation 1.
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5.3 Proposed Backbone Architecture for Image Segmentation

As it has been shown in [8, 12], the encoder-decoder architecture is well design deep learning

architecture for the segmentation tasks. More recently, the densely connected CNN [30] has been

shown that connecting different layers lead into more accurate results for detection problem. Based

on this recent evidence, a densely connected encoder-decoder is proposed herein as a new CNN

architecture and we use this as our baseline architecture to optimize. The proposed baseline archi-

tecture is illustrated in Figure 5.2. Dense blocks consist of four layers, each layer includes con-

volution operation following by batch normalization operation (BN) and Swish activation function

[50] (unlike commonly used ReLu). Also, a concatenation operation is conducted for combining

the feature maps (through direction (axis) of the channels) for the last three layers. In other words,

if the input to lth layer is Xl, then the output of lth layer can be represented as:

F(Xl) =Conv(BN(Swish(Xl))), (5.2)

where Swish(x) = xSigmoid(βx) and as it is discussed in [50], the Swish was shown to be more

powerful than ReLu since parameter β can be learned during training to control the interpolation

between linear function (β = 0) and ReLu function (β ≈ ∞). Since we are doing concatenation

before each layer (except the first one), so the output of each layer can be calculated only by

considering the input and output of first layer as:

F(Xl) = F(
l′=l−1
‖

l′=0
F(Xl′)) f or l≥ 1 and l = {1,2, . . . ,L}, (5.3)

where ‖ is the concatenation operation. For initialization F(X−1) and F(X0) are considered as φ

and X1, respectively, which φ is an empty set and there are L layers inside each block.

The decoder part of the CNN consists of three dense blocks and two transition layers. The decoder
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transition layers can be average pooling or max pooling and decrease the size of the image by

half. In the encoder part, we have same architecture as decoder part except that the transition

layers are bilinear interpolation (i.e., unpooling). Each of the decoder transition doubles the size

of the feature maps and at the end of this part, we obtain features maps as the same size as input

images. Finally, the output of the decoder is passed through a convolution and softmax to produce

the probability map. ADAM optimizer with a learning rate of 0.0001 is selected for training and

Cross Entropy is used as a loss function. The other hyperparameters of network such as number of

filters, filter heights, and widths for each layer are discussed in next section.

Figure 5.2: Details of the baseline architecture. We combine encoder-decoder based segmentation
network with densely connected architecture as a novel segmentation network, which has less
parameters to tune and more accurate. Concat: concatenation, BN: batch normalization, and conv:
convolution.

5.4 Learnable Hyperparameters

Following hyperparameters are learned automatically with our proposed architecture search algo-

rithm: number of filters, filter height, and filter width for each layer. Additionally, type of pooling
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layer was considered as learnable hyperparameters in our setting. Totally, there are 76 parame-

ters (N) to be learned: 3 parameters (filter size, height, and weight) for each of 25 layers (last

layer has fixed number of filters), and 2 additional hyperparameters (average or max pooling) for

down-sampling layers. More specifically:

– Number of filters: The number of filters (NF) for each layer is chosen from function yNF =

16xNF +16 which xNF = {1,2, . . . ,12}.

– Filter height: The filter height (FH) for each layer is chosen from function yFH = 2xFH +1

which xFH = {0,1, . . . ,5}.

– Filter width: The filter width (FW) for each layer is chosen from function yFW = 2xFW +1

which xFW = {0,1, . . . ,5}.

– Pooling functions: The pooling layer is chosen from function ypoolimg = xpooling which

xpooling = {0,1} which ’0’ represents max pooling and ’1’ represents average pooling.

The number of generated perturbation p is considered as 42 (experimentally) and in order to de-

crease the computational cost, each network is trained for 50 epochs, which is adequate to de-

termine a stable reward for the network. The average of dice index for the last 5 epochs on the

held-out validation set is considered as reward for the reinforcement learning.

5.5 Experiments and Results

Dataset:For investigating the performance of proposed method, a dataset from Automatic Cardiac

Diagnosis Challenge (ACDC-MICCAI Workshop 2017) are used [2]. These data set are composed

of 150 cine-MR images including 30 normal cases, 30 patients with myocardium infarction, 30 pa-

tients with dilated cardiomyopathy, 30 patients with hypertrophic cardiomyopathy, and 30 patients
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with abnormal RV. While 100 cine-MR images were used for training (80) and validation (20), the

remaining 50 images were used for testing with online evaluation. Also, for fair validation in train-

ing procedure, four subjects from each category have been chosen. The binary mask ground truth

of three substructures were provided by challenge organizers for training: right ventricle (RV),

myocardium of left ventricle(Myo.), and left ventricle (LV) at two time point of end-systole (ES)

and and end-diastole (ED).

The MR images were obtained using two MRI scanners of different magnetic strengths (1.5T and

3.0T). Cine MR images were acquired in breath hold (and gating) with a SSFP sequence in short

axis. Particularly, a series of short axis slices cover the LV from the base to the apex, with a

thickness of 5 mm (or sometimes 8 mm) and sometimes an inter-slice gap of 5 mm. The spatial

resolution goes from 1.37 to 1.68 mm2/pixel and 28 to 40 volumes cover completely or partially

the cardiac cycle. An example from this data set is shown in Figure 5.3.

Figure 5.3: An example for cine-MR (4D) cardiac image from ACDC data set ([2]).

Implementation details: We calculated dice index (DI) and Hausdorff distance (HD) to evaluate

segmentation accuracy (blind evaluation through challenge web page on the test data). The quanti-

tative results for LV, RV, and Myo as well as mean accuracy (Ave.) are shown in Table 5.2. Twenty
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images were randomly selected out of the 100 training images as validation set. After finding

optimized hyperparameters, the network with learned hyperparameters was trained fully with the

augmented data. The augmentation was done with in-plane rotation and scaling (Table 5.1). The

number of images increased by factor of five after augmentation.

Table 5.1: Data augmentation

Data augmentation
Methods Parameters
Rotation k×45,k ε[−1,1]

Scale ε[1.3,1.5]
Training Images

# of Images Image size
8470 200×200

Post-Processing: To have a fair comparison with other segmentation methods, which often use

post-processing for improving their segmentation results, we also applied post-processing to refine

(improve) the overall segmentation results of all compared methods. We presented our results

with and without post-processing in Table 5.2. Briefly, a 3D fully connected Conditional Random

Field (CRF) method was used to refine the segmentation results, taking only a few additional

milliseconds. The output probability map of the CNN is used as unary potential and a Gaussian

function was used as pairwise potential. Finally, a connected component analysis was applied for

further removal of isolated points.

Comparison to other methods: The performances of the proposed segmentation algorithm in

comparison with state-of-the-art methods are summarized in Table 5.2. The DenseCNN (with

ReLu and with Swish) is the densely connected encoder-decoder CNN designed by experts, and its

use in segmentation tasks recently appeared in some few applications, but never used for cardiac

segmentation before. Filter sizes were all set to 3× 3 in DenseCNN and growth rates were con-

sidered as 32, 64, 128, 128, 64, and 32 for each block from beginning to the end of the network,
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respectively. Also, the average pooling is chosen as the pooling layer. These values were all found

after trial-error and empirical experiences, guided by expert opinions as dominant in this field. The

2D U-Net, as one of the state of the arts, is the original implementation of the U-Net architecture

proposed by Ronneberger et al. in [14] was used for comparison too. Although we apply our algo-

rithm into 2D setting for efficiency purpose, one can apply it to 3D architectures once memory and

other hardware constraints are solved. The details of the learned architecture with the proposed

method is shown in Figure 5.4.

We obtained the final architecture design in 10 days of continuous training of a workstation with

15 GPUs (Titan X). Unlike the common CNN architecture designs (expert approach), which re-

quires months or even years of trial-and-error and experience guided search, the proposed search

algorithm found optimal (or near-optimal) segmentation results compared to the state of the art

segmentation architectures within days.

Figure 5.4: Details of the optimally learned architecture by the proposed method. Note that con-
nections among layers inside of each block are same as dense layers.

5.6 Discussions and Conclusion Remarks

We proposed a new deep network architecture to automatically segment cardiac cine MR images.

Our architecture design was fully automatic and based on policy gradient reinforcement learning.
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Table 5.2: DI and HD for all methods and substructures.

Methods 2D-UNET
DenseCNN

(ReLU)
DenseCNN Proposed Proposed+CRF

LV 0.904 0.913 0.922 0.921 0.928
RV 0.868 0.826 0.834 0.857 0.868

MYO 0.847 0.832 0.845 0.838 0.849DI

Ave. 0.873 0.857 0.867 0.872 0.882
LV 9.670 9.15 8.937 8.99 8.90
RV 14.37 16.35 16.31 14.27 14.13

MYO 12.13 11.32 11.28 10.70 10.66
HD

(mm)
Ave. 12.06 12.27 13.02 11.32 11.23

After baseline network was structured based on densely connected encoder-decoder network, the

policy gradient algorithm automatically searched the hyperparameters of this network, achieving

the state of the art results. Note that our hypothesis was to show that it was possible to design CNN

automatically for medical image segmentation with similar or better performance in accuracy,

and much better in efficiency. It is because expert-design networks require extensive trial-and-

error experiments and may take even years to design. Our study has opened a new venue for

designing a segmentation engine within a short period of time. Our study has some limitations due

to its proof of concept nature. One interesting way to extend the proposed model will be to learn

hyperparameters conditionally in each layer (unlike independent assumption of the layers). With

the availability of more hardware sources, one may explore many more hyperparameters, such

as ability to put more layers than basic model, defining skip-connections, and exploring different

activation functions instead of ReLU and other default ones. One may also avoid increasing search

space and still perform a good architecture design automatically by choosing the base-architecture

more powerful ones such as the SegCaps (i.e., segmentation capsules) [51].
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CHAPTER 6: INCORPORATING PRIOR KNOWLEDGE AND LABEL

NOISE IN MEDICAL IMAGE SEGMENTATION

– Aliasghar Mortazi, Naji Khosravan, Drew A. Torigian, Sila Kurugol, Ulas Bagci

(2019) A Weakly Supervised Segmentation by A Deep Geodesic Prior. In: Shi Y.,

Suk HI., Liu M. (eds) Machine Learning in Medical Imaging. (MLMI), MICCAI

2019. Lecture Notes in Computer Science, Springer, Cham

6.1 Overview

We hypothesize that, if modeled correctly, prior information can lead to a more robust segmentation

even when the labels are noisy (i.e., labels annotated by non-experts). To test this hypothesis,

we propose a novel method for learning the prior from the geodesic maps of multiple objects.

Then, an AE-like network is used to generate the original binary images from their corresponding

geodesic maps. Finally, the features from the trained AE are used as a prior to be integrated into

the segmentor for better guidance and performance improvement.

6.2 Proposed Weakly-Supervised Approach

Our framework consists of two main components: (1) the segmentation network (or segmentor in

short), and (2) the geodesic prior learning network. While our segmentation network assigns a class

label to each pixel of the input image, our second network (AE) learns a prior from geodesic maps,

generated for each object of interest (for multiple objects). We anticipate (and show later in the
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results section) that incorporating a well-designed prior into the segmentation network improves

its performance, especially in the presence of inaccurate labels.

Figure 6.1: The proposed framework has two main components: (1) segmentation network: assigns
a class label to each pixel, and, (2) AE which learns a prior from geodesic maps. Green arrows
show the flow of training of the segmentor and red arrows show the flow of training of GAE. Note
that in test phase only segmentor is used. Also, the in our method the noisy annotations are used
for whole training process.

The overview of our approach is illustrated in Figure 6.1. The segmentation network (Netseg)

(Figure 6.1(a)) is an encoder-decoder architecture with 3D kernel convolutions. We utilize skip

connections in the form of dense connection throughout this network [52]. For the prior learning

network (AE), noisy annotations (or binary ground truths) are used to generate geodesic maps (Fig-

ure 6.1(c)). Then, the geodesic auto-encoder (GAE) is designed to generate binary ground truths

from geodesic maps. Once trained, GAE can be used to calculate two sets of bottleneck features:

features resulted from feeding the geodesic map to GAE, and features resulted from feeding the

44



www.manaraa.com

corresponding Netseg’s output probability map to GAE. Finally, the distance between these two

feature vectors are used to form an extra term in the loss function of the Netseg (Figure 6.1).

We define the segmentation network as a function, mapping a gray-scale 3D input image Ii(Ii ∈ R3)

into a probability map Pi, (i ∈ {1,2, . . . ,N}), N being number of 3D images:

Pi = Netseg(Ii,θseg), (6.1)

where θseg are the parameters of NetSeg, trained to minimize Ltot defined in Equation 6.2. A

geodesic map, on the other hand, is generated from ground truth binary images Bi as Gi = Fgeo(Bi)

and then a GAE network (Netgae) is trained to generate binary image from this corresponding

geodesic map (explained in Section 6.4). The GAE consists of an encoder, a fully connected (FC)

layer, and a decoder. The encoder and FC layers are the feature extraction (Encgae) parts, mapping

the input geodesic map to the feature vector Featgae = Encgae(Gi) of length L f eat . The decoder

(Decgae) reconstructs the corresponding binary image(s) from the Featgae. Hence, the geodesic

network can be formulated as:

B̂i = Netgae(Gi,θgae) = Decgae(Encgae(Gi,θenc),θdec), (6.2)

where θgae are the parameters of Netgae, trained to minimize the binary map reconstruction loss

Lrecon in Netgae. Lrecon is a cross-entropy loss between ground-truth and Netgae’s output and

θgae = θenc ∪ θdec. Since Netgae is designed to learn the relation between geodesic maps and

their corresponding binary maps, Featgae contains high-level features inferred from shapes and

texture of the objects of interests. This encoded knowledge can be used as an extra term of su-

pervision for better training of Netseg. For each training sample i, we calculate a loss function

Lgae(Encgae(Pi),Encgae(Gi)) to be back-propagated into the segmentation network along with
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loss of the segmentor itself. The total loss function of the segmentator is then represented as:

Ltot = ∑
i

Lseg(Pi,Bi)+Lgae(Encgae(Pi),Encgae(Gi)). (6.3)

We first train θgae with Lrecon. Once trained, θseg is updated with the loss function Ltot , while

θgae are fixed.

6.3 Network Architecture for Segmentation

Figure 6.2: Dense Block (DB) content. C: concatenation operation, BN: Batch normaliza-
tion, LReLu: Leaky ReLu activation, and 3D conv: 3D convolution with a 3×3×3 filter.

We extend fully convolutional dense nets, called Tiramisu [21], from 2D to fully 3D. The de-

tails of the adapted network are shown in Figure 6.1(a). The encoder and decoder include four

dense blocks, each. Within dense blocks, there are four 3D convolution layers followed by a Batch

Normalization (BN) layer with Leaky ReLu nonlinear activation. The size of the convolution ker-

nels are set to 3× 3× 3 in all convolution layers (Figure 6.2). The number of filters in the first

convolution layer and the growth rate are set to 16 for an optimal performance after extensive

explorations. The number of output filters in a dense block is N f (Xl) = N f (
l′=l−1
‖

l′=0
N f (Xl′)), where

l = {1,2, . . . ,L} and ‖ is the concatenation.

The encoder includes four 3D max pooling operations as transition layers after each dense block.

The pooling operation is set to downsample the input size by 2 in x-y plane. Downsampling is not
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applied to z direction due to its low resolution (but could be applied for other settings). Similarly,

the decoder includes four up-samplers (using bilinear interpolation) as transition layers. Each up-

sampler is designed to double the size of its input. Finally, the last layer contains a convolution

layer following by a softmax function to introduce a notion of probability map in the output. We

use Adam optimizer to minimize the Ltot in Netseg. Lseg and Lgae are designed with Cross Entropy

and Mean Square Error functions, respectively.

6.4 Learning a Geodesic Prior

Most existing literature related to prior incorporation into segmentation utilize accurate binary

labels for extracting shape information [39, 40]. Unlike the mainstream studies, we propose to

use geodesic maps to increase robustness of the priors when dealing with noisy labels, which

has never been done before. This approach can particularly be beneficial when the object has

complex boundary information to be delineated. In this study, geodesic maps are generated from

labels, regardless of being noisy or clean. We expect the proposed geodesic map to capture more

information then conventional shape priors.

For each object in our images, we compute an independent geodesic distance map from its binary

map Bi by using the Fast Marching (FM) approach [53]. FM is a numerical method to solve

boundary value problems of the Eikonal as:


F(x)|∆T (x)|= 1, ∀x /∈ S,

F(x) = 0, ∀x ∈ S,
(6.4)

describing the evolution of a contour as a function of time, T (x), with the speed of F(x) in the

normal direction at a point x on the propagating surface starting from the zero-level S. With a
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specified speed, F(x), the time when the contour crosses point x can be computed by solving

equation 6.4. In this setting, the special case of F(x) = 1 gives the signed distance of every point

x from S. In our case, since we have multiple objects (i.e., 3 objects: LV, RV, Myocardium), we

defined S as the center of mass of the all closed objects. In our experimental setup, we have also

an object with non-Jordan surface (i.e., Myocardium, having donuts shape). In order to include

such objects in the geodesic computation, we simply define the the skeleton of the shape and the

distances of all the points within each object are computed from their zero line contours S. These

maps (obtained from each object) are combined in n-channels (i.e., 3 in our experiments: LV, RV,

Mayo) and fed into the auto-encoder as described below.

The proposed AE architecture (Netgae), for learning prior information, is illustrated in Figure 6.1(b).

This architecture is very similar to the segmentor with a FC layer in the middle (instead of a con-

volution layer) to generate deep geodesic features. Also, in order to increase the robustness of

these features, there is no skip connections from encoder to decoder. Both encoder and decoders

include four DBs and the filters size in each convolution layer was set to 3× 3× 3. The growth

rate for the encoder part is set to 16 (empirically) as in the segmentor and ADAM optimizer is used

to minimize Lrecons ( Cross Entropy loss).

6.5 Experiments and Results

To show the robustness of our algorithm and its performance on noisy labels, we ran all the exper-

iments on both expert as well as two levels of noise in the labels (L1 and L2). We reported Dice

Index (DI) and Hausdorff distance (HD) in Table 7.2. Also, in cases where we were dealing with

noisy labels, there was an upper bound for the performance of the networks. This upper bound was

due to lack of information in the presence of noise. To have a sense of this upper bound, for the

sake of a more extensive and fair comparison, DI and HD of generated noisy labels with respect
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to clean ground truths are reported in this table (Upper boundary columns). Higher DI and lower

HD indicate a superior segmentation performance. While training of the networks were done using

weak/noisy labels, validation was performed on expert/accurate labels.

Data set: Data set which used for evaluating proposed method in this chapter is data set from

ACDC challenge\workshop in MICCAI 2017 and it is same data set used in Section 5.5 in Chapter

5. Please refer to that Section for more details about data set.

Figure 6.3: Generating noisy labels. Binary images went through a two-step process of adding
pepper noise and filling inside object which makes the boundaries inaccurate.

Generating noisy labels: The current annotations at ES and ED in ACDC dataset are considered

as expert annotations (as clearly defined by the challenge organizers). Usually, the inexpert anno-

tations include some under-segmentation and/or over-segmentation. This is due to lack of naive

annotator’s knowledge in finding the edges. Thus, in order to mimic such inexpert annotations

(weak labels), we manipulated the ground truths as follows: first we obtained the outer shell of

each object by applying erosion to the binary image and then calculate the difference between the

original binary image and eroded one. Then, salt-pepper noises were added to each object’s binary

shell randomly and filling was applied to the shell. This process effected only edges of the objects

without changing the background, resulting in a shape with distorted boundaries. Finally, eroded

binary edges was added to the distorted shell. A sample of weak labels vs. expert labels is shown

in Figure 6.3. Participating radiologists confirmed the weak labels through visual evaluations.
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Baseline models for comparisons: We have conducted several baseline architectures in order to

show the strength of our proposed method. First, the segmentor was trained only with Lseg and

without using prior information with both of the inexpert and expert annotations. Also, in order

to illustrate the advantage of using the geodesic maps instead of binary maps in modeling shape

information, the segmentation network was trained with the prior information obtained from binary

AE (segmentation + binary labels shape). In this baseline, the AE was trained to reconstruct binary

map in its output from its corresponding binary input map (instead of geodesic in our method). The

results of this baseline (Binary Prior) and our proposed method (Geodesic Prior) for inexpert and

expert annotations are reported in Table 7.2.

Table 6.1: DI and HD are reported for both expert and inexpert labels.

Labels Expert Labels Inexpert Labels(L1) Inexpert Labels(L2)

Methods
Seg.
Net.

Binary
Prior

Geodesic
Prior

Seg.
Net.

Binary
Prior

Geodesic
Prior

Upper
boundary

Seg.
Net.

Binary
Prior

Geodesic
Prior

Upper
boundary

LV 0.854 0.879 0.885 0.831 0.867 0.878 0.880 0.811 0.856 0.873 0.869
RV 0.803 0.851 0.847 0.791 0.828 0.836 0.835 0.762 0.811 0.831 0.824

MYO 0.771 0.816 0.826 0.762 0.798 0.810 0.812 0.751 0.780 0.809 0.801
DI

Ave. 0.809 0.849 0.853 0.795 0.831 0.841 0.842 0.775 0.816 0.838 0.831
LV 14.79 10.08 10.14 15.87 12.57 11.73 11.75 14.89 13.03 11.65 11.81
RV 17.77 13.77 13.45 18.89 17.01 15.14 15.15 17.57 17.53 15.44 15.76

MYO 16.53 12.58 12.04 16.91 13.95 12.73 12.70 16.47 15.12 12.88 13.12
HD

(mm)
Ave. 16.36 12.14 11.88 17.22 14.51 13.20 13.20 15.64 15.23 13.32 13.56

Implementation Details: As a pre-processing step, we applied the anisotropic filtering to reduce

noise from MRI, histogram matching to standardize MRI intensities, and all images were resized

to 200×200×10 by using B-spline interpolation. First the GAE was trained (early-stopping) and

then the deep geodesic features (Featgae) were extracted from training data. Then, during training

of Netseg the output probability maps of the Netseg were passed though Encgae and then the loss

(Lgae) between two feature vector was calculated and back-propagated though the Netseg. Finally,

Conditional Random Field is used for post-processing. we used 80 MR images for training, the

20 images were used as validation, and the 50 images were used for test (with online evaluation).

Also, we have used NVIDIA Quadro P6000 GPU for training the networks.

50



www.manaraa.com

6.6 Discussions and Conclusion Remarks

In this study, we propose a novel framework incorporating a deep geodesic prior information into

the segmentation framework. Our AE network is capable of learning high-level features from gen-

erated geodesic maps for multiple objects. We show that our proposed approach outperforms the

state-of-the-art methods both on clean and noisy labels with several key advantages. First, incorpo-

rating prior information improves segmentation results even with imperfect ground truths. Second,

more specifically, shape prior is shown to be useful both in Euclidean and Geodesic distance based

evaluations, and geodesic priors are shown to be more accurate than the former. Furthermore, the

proposed network is capable of performing fully 3D image segmentation unlike most 2D methods

in the literature, and can handle multiple objects too. One may argue to obtain inexpert annotations

directly from inexpert annotators for more realistic evaluations, but the regulations for medical

imaging data sharing in general (and ACDC challenge in particular) didn’t allow to get such anno-

tations. Our future work will comprehensively test our hypothesis for different components of our

present study such as different clinical imaging problem, large number of inexpert annotators, and

inspecting the results based on object type and size.

51



www.manaraa.com

CHAPTER 7: CHOOSING THE RIGHT OPTIMIZERS FOR MEDICAL

IMAGE SEGMENTATION

7.1 Overview

In this chapter, we study how to design (and choose) right optimizers for deep learning based med-

ical image segmentation problems. In the literature, the most of the optimization methods have

been designed, tested, and evaluated for classification problems where prediction space is limited

to hundred of cases typically. However, in medical image segmentation problems, the prediction

of parameter space is much more larger because each pixel is predicted for a label; hence, con-

ventional choice of optimizer may not necessarily be right for the segmentation problem at hand.

There is a strong need to tune optimizers for segmentation problems. While adaptive optimizers

such as ADAM and ADAGrad are more popular than other conventional (non-adaptive) stochas-

tic gradient descent (SGD) based approaches (due to their fast convergence), recent studies show

that adaptive optimizers can suffer from poor generalization. In this chapter, we first show that

adaptive optimizers can overfit faster compared to classical SGD optimizers and resulting in poor

generalization in segmentation problems. Second, to address this limitation of adaptive optimiz-

ers, we propose a new optimization method based on the Nesterov function, which is computa-

tionally cheaper and it has better generalization capabilities than adaptive optimizers. We have

performed our segmentation experiments by using cardiac imaging dataset from ACDC challenge

from MICCAI 2017. Our extensive evaluations showed that the proposed optimizer can get better

results than other optimizers in deep learning literature with similar or less computational burden

in multi-object segmentation settings. Our proposed optimizer based baseline segmentation meth-

ods obtained more than 2% improvement in dice metric in comparison with the state-of-the-art

optimizers.
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7.2 Introduction

In segmentation problems, deep networks are often taken from classification networks and they

are re-designed for handling pixel level classification instead of image level labeling. While doing

that researchers develop different loss functions, make new architectural designs and do pruning

and other optimization strategies to adjust the problem settings in favor of pixel level classification

(segmentation) than detection or image classification (e.g., diagnosis). However, to date there

has been no in-depth exploration about how optimization methods are affecting the segmentation

results and which optimization methods are the right choice for the particular problem at hand.

Optimization methods are the key elements in training neural network. There has been controver-

sial results in the literature about the characteristics of available optimization methods. Majority

of the neural network optimizers have been tested and evaluated for the classification tasks such

as image classification which usually dimension of output prediction (i.e number of classes are

around 1000), which is significantly different from segmentation problem with output prediction

dimension with same size as input (i.e., 200×200 as in our experiments). Hence, these differences

between classification and segmentation problems imply that a different investigation and method

may be needed for optimization. In this chapter, for the first time in the literature we investigate

the effects of different neural network optimizers for medical image segmentation problems and

introduce a new simple optimizer to address the current drawbacks of conventional optimizers.

Non-adaptive vs. adaptive optimizers: One of the dominant optimization algorithms is stochastic

gradient descent (SGD), which is simple and performing well across many applications. However,

it has the disadvantage of scaling the gradient uniformly (i.e., the same way) in all directions (for

each parameter). Another challenge is to choose appropriate value for learning rate (LR). Since

LR is fixed in SGD based approaches, it is critical to set it appropriately as it can directly af-

fect both convergence speed and accuracy of neural networks. There have been several works
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introduced to address this problem by allowing to change LR during training, called "adaptive op-

timizers". Based on the history of change in gradients, LR is adapted in each iterations. Examples

of such methods consists of ADAM [16], ADAGrad [15], and RMSProp [54]. Adaptive optimiz-

ers provide, in general, faster training experiences, thus lead to widespread use in deep learning

applications.

The same story applies for the optimizers with momentum. Momentum optimizers [42] was in-

troduced to speed up the convergence by considering the changes in last iteration with a multi-

plier which called "momentum". Again, choosing a proper value for momentum rate (MR) was

challenging at first, then some adaptive optimizers such as Adaptive Momentum Optimizer [16]

(ADAM) was introduced to dynamically change the MR in addition to changing LR adaptively.

For the past few years, adaptive optimizers such as ADAGrad [15] and ADAM [16] dominated the

deep learning field due to their fast convergence.

Despite their popularity, adaptive optimizers may converge to different minima points in compar-

ison with classical SGD approaches. In other words, they have likely worse generalization ability

and out-of-sample behavior than non-adaptive optimizers as evidenced by increasing number of

studies published recently [17, 18, 19]. Towards a better generalization ability, researchers turned

back to original SGD approaches but with new attempts to solve convergence speed. For instance,

YellowFin optimizer [19] proved that properly hand tuned LR and MR obtained better results than

ADAM. Although it was a proof-of-concept study showing evidence for counter-intuitive idea of

non-adaptive methods, in practical applications hand-tuning those rates is challenging and time

consuming. In another attempt, a cyclic learning rate (CLR) was introduced in [18] to change

the learning rate according to a cycle (i.e triangle or Gaussian), proposing a practical solution to

hand-tuning requirement without manual burden. The only disadvantage of the CLR is that a fixed

momentum rate may limit the search state, and may fail to find optimal solution.
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Summary of our contributions: By motivated from [18], herein we introduce a new variant of

CLR, called Cyclic Learning/Momentum Rate (CLMR), in which both learning rate and momentum

rate are determined in a cyclic manner during training. This new optimizer has two advantages over

adaptive optimizers: (1) it is computationally much cheaper than their adaptive counterparts. (2),

it generalizes better than adaptive optimizers. Furthermore, CLMR leads to better results than its

conventional baselines such as SGD and CLR. Lastly, we investigate the effect of changing the

frequency of cyclic function in training and generalization and suggest the optimum frequency

values. We also systematically explore several other optimizers commonly used in medical image

segmentations, and compare their performance as well as generalization ability in multi-object

segmentation settings by using cardiac MRI images (cine-MRI).

The rest of the chapter is organized as follows. In section 7.3, we introduce the background infor-

mation for neural network optimizers, their notations, and use in medical image segmentation. In

section 7.4, we give the details of the proposed method and network architectures that segmentation

experiments have been conducted. Experimental results are summarized in Section 7.5. Section

7.6 concludes the paper with discussions and future works.

7.3 Background

7.3.1 Current Optimization Methods in Deep Learning

Optimizing parameters of neural networks have been challenging from beginning due to huge

number of parameters need to be trained. Generally, the current optimizers can be categorized

regarding having a fixed LR/MR, or having adaptive LR/MR, or having cyclic/changing LR/MR.
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7.3.1.1 Optimizers with fixed LR/MR

Gradient Descent (GD), SGD and Mini-batch GD were first optimizers used for training neural

networks. The updating rule for these optimizers include only the value of last iteration as it is

shown in Eq. 7.1. Choosing appropriate value for learning rate is challenging in these optimizers,

since if LR is very small, then convergence is very slow; and if LR is very high, the optimizer will

oscillate around global minima (instead of converging):

θi = θi−1− α ∇ θiJ( θi), (7.1)

where θ is the network parameters, α is the learning rate, J is a cost function for minimization

(function of θ , X(input), and Y (labels)). The equation 7.1 can be considered as an updating rule

for GD, SGD, and mini-batch GD by choosing X and Y as all samples, a single sample, and a batch

of samples, respectively.

The Momentum optimizer [42] was introduced to speed up the convergence of optimization by

considering the value of all past iterations with a rate which called momentum. The update rule for

this optimizer is:

θi = θi−1− α ∇ θiJ( θi)− β ( θi−1− θi−2), (7.2)

in which β is momentum rate (MR). As it is shown in equation 7.2, the past iterations don’t

play any role in cost function and cost function is only calculated with respect to current itera-

tion. Also, similar to LR, choosing a proper value for momentum rate is again challenging and

it has correlation with chosen value for LR too. Then, Nesterov accelerated gradient [43] (NAG)

was introduced to accelerate the convergence by including information of previous iterations in
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calculating gradient of cost function as shown in following equation:

θi = θi−1− α ∇ θiJ( θi− β ( θi−1− θi−2))− β ( θi−1− θi−2) (7.3)

The NAG optimizer usually performs better in convergence speed and accuracy in comparison with

other fixed LR/MR optimizers.

7.3.1.2 Optimizers with adaptive LR and MR

One of the major drawbacks of optimizers with fixed LR/MR is the lack the history of gradient of

past iterations when adapting the LR and MR. ADAGrad [15] is one of fist adaptive LR optimizers

used in deep learning area and it basically adapts the learning rate for each parameter in network by

dividing gradient of each parameter by its sum of the squares of gradient as it is shown in following

equation:

θi = θi−1− α
1√

Gi + ε
◦ ∇ θiJ( θi), (7.4)

where Gi is a diagonal square matrix with the size of number of parameters and each element of

its diagonal is equal to the sum of square of gradient of its corresponding parameter as follows:

Gi =
I

∑
i=1

( ∇ θiJ( θi))
2, (7.5)

in which i stands for current iteration. One of the drawbacks of ADAGrad is gradient vanishing

due to accumulation of all past square gradients. ADADelta and RMSProp solve this problem by
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considering a limited window for summing past square gradient (instead of all of them).

The most popular optimizer which is used in most of the deep learning application is called ADAp-

tive Momentum optimizer (ADAM)[16]. ADAM optimizer updating rule used past squared gradi-

ent (as scale) and also like momentum, it keeps exponentially decaying average of past gradient:

θi = θi−1− αi
β1 ∇ θ J( θi−2)− (1− β1) ∇ θ J( θi−1)√

β2 + ε
◦ ∇ θiJ( θi), (7.6)

As mentioned before, one of the disadvantages of adaptive learning methods is its computational

cost because they are required to calculate and keep all the past gradients and their squares to update

next parameters. Also, the adaptive learning optimizer may converge to different minima point in

comparison with fixed learning rate optimizers which is worse in generalization [17, 18, 19].

CLR was proposed to change the learning rate during training and doesn’t need additional compu-

tational cost in comparison to classical SGD optimizers. It is based on the idea of fixed learning

optimizer and changes global LR in a cyclic manner. Figure 7.3a. shows an example use of CLR.

7.4 Methods

Our goal is to find the right optimizer, for medical image segmentation problems under constraint

of better generalization and low computational cost. We choose four different state-of-the-art

architectures for segmentation which have been state-of-the-art architectures in the literature (with

some modification with respect to our application) which are described as follows:
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7.4.1 CNN Architectures

Encoder-Decoder Architecture: This architecture is simply consists of the encoder and decoder

part as illustrated in Figure 7.1, without considering red skip connections. The filter size in all

the layer are 3×3 and each encoder and decoder part include 5 CNN blocks and each CNN blocks

consist of different number of layers as mentioned in Table 7.1. Also, the number of filters in

each CNN block are a fixed number and they are mentioned in Table 7.1 for each layer. Each layer

within the CNN block includes Convolution+Batch normalization+ReLu as activation function

(CBR).

U-Net Architecture: This architecture is similar to the Encoder-Decoder architecture as illustrated

in Figure 7.1 with red skip connections from encoder part to decoder part. The number of layers

and filters for each block are mentioned in table 7.1.

DenseNet Architecture: Two different DenseNet architectures are used in this section. First, the

architecture in Figure 7.1 with dense blocks (DBs) and skip connections is DenseNet_1. Then, in

order to use higher growth rate (GR), in DenseNet_2, in the end of each block a convolution layer

with kernel size of 1×1 is used to decrease number of its input filters by C rate, which C is equal

2 in this paper. The GR in DenseNet_2 increased to 24 (from 16 in DenseNet_1) while the number

of parameters decreased (Table 7.1).The number of CBR layers and also number of parameters are

mentioned in Table 7.1.

7.4.2 Dense Block

Within the DB, a concatenation operation is done for combining the feature maps (through direc-

tion (axis) of the channels) for the last three layers. So, if the input to lth layer is Xl, then the output
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Table 7.1: Number of layers in each block of different architectures and number of parameters

Enc_Dec U-Net DenseNet_1
(GR=16)

DenseNet_2
(GR=24)

Block 1 6 layers,#filters=32 6 layers,#filters=32 6 layers 6 layers
Block 2 8 layers,#filters=64 8 layers,#filters=64 8 layers 8 layers
Block 3 11 layers,#filters=128 11 layers,#filters=128 11 layers, 11 layers
Block 4 15 layers,#filters=256 15 layers,#filters=256 15 layers 15 layers
Block 5 20 layers,#filters=512 20 layers,#filters=512 20 layers 20 layers
Block 6 20 layers,#filters=512 20 layers,#filters=512 20 layers 20 layers
Block 7 15 layers,#filters=256 15 layers,#filters=256 15 layers 15 layers
Block 8 11 layers,#filters=128 11 layers,#filters=128 11 layers 11 layers
Block 9 8 layers,#filters=64 8 layers,#filters=64 8 layers 8 layers
Block 10 6 layers,#filters=32 6 layers,#filters=32 6 layers 6 layers

# of params
(in millions): 77.5 79.1 7.7 8.8

of lth layer can be shown by equation 7.7:

F(Xl) =CBR(Xl) (7.7)
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Figure 7.1: CNN Architecture is used for pixel-wise segmentation. The architecture with CNN
blocks and without red skip connections is Encoder-Decoder architecture. The architecture with
red skip connection and CNN blocks (Figure 7.2a) is U-Net and with Dense block (Figure 7.2b) is
Tiramisu

Since we are doing concatenation before each layer (except first one), so the output of each layer

can be calculated only by considering the input and output of first layer as following:

F(Xl) = F(
l′=l−1
_

l′=0
F(Xl′)) for l≥ 1,

and l = {1,2, . . . ,L},
(7.8)

where _ is defined as concatenation operation. For initialization F(X−1) and F(X0) are considered

as {} and X1, respectively, which {} is an empty set and there are L layers inside of the block.

Let Kout be the number of output features for each layer (channel out), and Kin1 the number of

input features for first layer (channel in). Then, the feature maps growth (channel out) for second,

third, . . . , and Lth layer are Kout +Kin1 , 2Kout +Kin1 , . . . , and (L− 1)Kout +Kin1 , respectively.

The growth rate for the DB is the same as last layer.
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Figure 7.2: (a) CNN block used in Enc-Dec and UNet architectures, (b) Dense block used in
Tiramisu architectures

7.4.3 Cyclic Learning/Momentum Rate Optimizer(CLMR)

As it is discussed by Smith in [18], having a cyclic learning rate (CLR) can be a more effective

way than having the adaptive optimizer specifically in generalization. Smith [18] introduced a

pre-defined cycle (such as triangle or Gaussian function) that a learning rate is changing according

to that cycle. Here, we hypothesize (and show later in the results part) that having a cyclic mo-

mentum in Nesterov optimizer (Eq. 7.2) can lead to better accuracy in segmentation tasks. As a

reminder, momentum in Eq. 7.2 is used to consider the past iterations by a coefficient called mo-

mentum. Hence, choosing the proper value for momentum were challenging from beginning and

some adaptive methods such as ADAM, were trying to solve this issue with adjusting momentum

rate adaptively, but they have their own challenges as mentioned before.

We propose to change the MR in similar way to LR. For this, we considered cyclic triangle function

for both MR and LR (7.3). cyclelr and cyclemr determine the period of triangle function for LR

and MR respectively, and defined as:

cyclelr =Clr× It, (7.9)
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Figure 7.3: CLR and MLR functions. (a) Learning rate triangle function for different Clr values
with minlr = 0.0005 and maxlr = 0.05. (b) Momentum rate triangle function for different Cmr
values with minmr = 0.85 and maxmr = 0.95.

cyclemr =Cmr× It, (7.10)

where Clr and Cmr are positive even integer numbers, It is number of iteration per each epoch.
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In Figure 7.3a and 7.3b, the cyclic function for different values of Clr and Cmr are illustrated.

Moreover, the value of LR during whole training can be determined from equation 7.11:

LR =


2× maxlr−minlr

Clr×It × i+minlr, f or (N)× cyclelr ≤ i < 2N+1
2 × cyclelr,

−2× maxlr−minlr
Clr×It × i+2maxlr−minlr, f or 2N+1

2 × cyclelr ≤ i < (N +1)× cyclelr,

(7.11)

where maxlr and minlr are maximum and minimum values of the LR function. i is the iteration

indicator during whole training process and i ∈ {1,2, . . . , It ×E p} which E p is total number of

epochs in training. And N is a set of natural number. The value of MR can be also determined

from following equation:

MR =


2× maxmr−minmr

Cmr×It × i+minmr, f or (N)× cyclemr ≤ i < 2N+1
2 × cyclemr,

−2× maxmr−minmr
Cmr×It × i+2maxmr−minmr, f or 2N+1

2 × cyclemr ≤ i < (N +1)× cyclemr,

(7.12)

where maxmr and minmr are maximum and minimum values of LR function.

Equations 7.11 and 7.12 are used to determine the values of LR and MR in each iteration during

training. One of the challenges in using these cyclic LR and MR functions are determining the

values of some variables in the equations including maxlr, minlr, and Clr for LR; and also maxmr,

minmr, and Cmr for MR. For finding the the maxlr and minlr values, as it suggested in [18], one

can run the networks with different LR values for few epochs and then these values are chosen

according to how network accuracy is increasing and decreasing. However, the proposed solution

64



www.manaraa.com

seems fine when only LR is changing that can not apply when both LR and MR are changing,

since the changing value of one them can affect the accuracy of the other one. It means one needs

to run huge number of networks in order to determine the optimum values of maxlr, minlr, max,r,

and minmr which is not computationally feasible. Also, a heuiristic method is suggested in [18] to

find the best value of Clr.

In this chapter, we propose a way to find best cyclic functions with minimum computational cost.

We consider fixed values for maxlr, minlr, max,r, and minmr parameters and we choose these values

in a way to cover a practical range of values for both LR and MR (illustrated in Figure 7.3). Then,

we did a reasonable heuristic search for finding the appropriate amount of Clr and Cmr from the

values which are shown in Figure 7.3. Since, changing the values of Clr and Cmr lead to change

the value of LR and MR in different iterations, thus there is no need to find the optimum values for

minimum and maximum. It is worthy to note that even different values of Clr and Cmr can affect

the results of each other and we did search in 2D space of Clr and Cmr to find their optimum values.

7.5 Experiments and results

7.5.1 Data

Data set which used for evaluating proposed method in this chapter is data set from ACDC chal-

lenge\workshop in MICCAI 2017 and it is same data set used in Section 5.5 in Chapter 5. Please

refer to that Section 5.5 for more details about data set.
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7.5.2 Implementation details

The networks are trained for fixed number of epochs (100) and it has been make sure they are

trained fully. All the images were resized to 200× 200 in short axis by using b-spline interpo-

lation.Then, as pre-processing steps, we applied anisotropic filtering and histogram matching to

whole data set. The total number of 2D slices for training were about 1690 and batch size of 10

were chosen for training. Thus, the number of iteration per epoch is 1690
10 = 169 and we have total

number of iteration 100× 169 = 16900 during training. The Cross Entropy loss function were

chosen for minimization. All the networks are implemented on Tensorflow with using NVIDIA

TitanXP GPUs.

Also, in the test data set, as the post processing steps, we applied 3D conditional random field

following by selecting connecting component to output of the network.

7.5.3 Results

We calculated Dice Index (DI) and also Cross Entropy (CE) loss on validation set for investigating

our proposed optimizer along with other optimizers. In Figures 7.5a and b, the CE and DI curves

versus iterations for U-Net architecture for different optimizers are illustrated. As these curves are

showing, the DI in U-Net with Adam optimizer is increasing rapidly and sharply at very beginning

and then it is almost fixed. But, although our proposed optimizer (CLMR(C_lr=20, C_mr=20))

is not learning as fast as ADAM optimizer at ver beginning, but it gets higher than ADAM curve

finally (this phenomena is more clear in CE curves). The quantitative results on test set in Table

7.2 support the same conclusion. Also, same pattern is happening for DenseNet_2 architecture in

Figure 7.6. This is confirming our hypothesis that adaptive optimizers are converging faster but to

different local minima point in comparison with classical SGD optimizers.
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As Figure 7.5 shows the U-Net architecture with CLMR optimizer performs much better than its

CRL optimizer counterpart. This proves that having a cyclic momentum rate can yield to better

efficiency than having a simple cyclic learning rate. The results on test set between CLR and

CLMR optimizer in Table 7.2 also support this conclusion.

In addition, the curves of DI and CE among different architectures which trained by Adam and

CLMR are illustrated in Figure 7.4 a and b. Although, the DenseNet_2 has less parameters in com-

parison with other architectures, but it gets better results than the other architectures. These curves

reveals some important points about using different architectures: first, for all different architec-

ture CLMR optimizer is working better than ADAM optimizer which indicate the power of pro-

posed cyclic optimizer. Second, DenseNet architectures are getting better results than U-Net and

Enc_Dec architectures, however the number of parameters in U-Net and Enc_Dec are almost 10

times of DenseNet architectures (Table 7.1). This points indicates that having a over-parameterized

architectures can saturate in the training quickly, while having local skip connections can solve the

mentioned problem. Third, comparison between curves of DenseNet_1 and DenseNet_2 shows

that having higher GR is more important than having dense block with high number of parameters.

Since, DenseNet_2, with GR=24, got better results in comparison with DenseNet_1 with twice of

number of parameters in end of each dense block in comparison to DenseNet_2 and GR=16. These

results are supported with the dice metric obtained from test data and are mentioned in Table 7.2.

Finally, the DI on test data set with online evaluation for different architectures with different

optimizers are summarized in Table 7.2. In order to have better comparison, the box plot of all

methods are illustrated in Figure 7.7. As this figure shows the dice statistic obtained from CLMR

is similar or better than other optimizers.

In addition, qualitative results for different methods are illustrated in Figure 7.8 and Figure 7.9.

Figure 7.8 shows the contours for RV, Myo., and LV in ED for different methods and architectures
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and also ground-truth across four slices from Apex to Base. Usually, segmentation of RV near

the Apex are more harder than others, since RV is almost vanishing at this point and as it is

clear some of the methods couldn’t even detect the RV at slices near Apex. Figure 7.9 shows

the contours for RV, Myo., and LV in ES for different methods and architectures and also ground-

truth across four slices from Apex to Base. Since at Es heart is at minimum volume, thus it is

more difficult to segment substructures. Also, as it is clear in Figure 7.9, RV near Apex and Base

is disappeared, however most of the methods recognize other structures as RV at Base slice. The

contours generated with DenseNet_2 method is more similar to ground-truth in both ED and ES,

which shows the generalizability of proposed method.

Table 7.2: DI in the test data set with online evaluation.

Adam Nesterov CLR CLMR
Enc_Dec

RV

0.3272 0.1309 0.3833 0.4336
UNet 0.8574 0.5968 0.8618 0.8820
DenseNet_1 0.8802 0.6936 0.8961 0.8957
DenseNet_2 0.8781 0.7232 0.8910 0.9049
Enc_Dec

Myo

0.1473 0.1492 0.1692 0.1686
UNet 0.8628 0.6486 0.8588 0.8631
DenseNet_1 0.8787 0.7170 0.8834 0.8960
DenseNet_2 0.8796 0.7196 0.8904 0.8999
Enc_Dec

LV

0.4950 0.3260 0.4972 0.5418
UNet 0.9238 0.7670 0.8936 0.9360
DenseNet_1 0.9376 0.8465 0.9351 0.9393
DenseNet_2 0.9196 0.8449 0.9378 0.9478
Enc_Dec

Ave.

0.3232 0.1687 0.3499 0.3814
UNet 0.8813 0.6708 0.8714 0.8937
DenseNet_1 0.8988 0.7524 0.9049 0.9103
DenseNet_2 0.8924 0.7626 0.9064 0.9176
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7.6 Discussions and Conclusion Remarks

We proposed a new cyclic optimization method (CLMR) to solve the current problems in deep

learning optimization. We hypothesized that having a cyclic learning/momentum function can

yield to better generalization in comparison to adaptive optimizers, then we showed in the results

part that CMLR is doing better than adaptive optimizers.

Also, our method could do better than other cyclic methods (such as CLR) by considering momen-

tum changes in Nesterov optimizer as a cyclic function too. Finding the parameters of these cyclic

functions are complicated due to the correlation which exists between LR and MR function. So,

we formulated both LR and MR functions and we suggested a method to find the parameters of

these cyclic functions with reasonable computational cost.

The proposed method is just a beginning to new generation of optimizers which can generalize

better than adaptive ones. One of the challenges in designing these kind of optimizers are setting

the parameters of cyclic functions which need further investigation. One can learn these parameters

with a neural network or reinforcement learning in an efficient manner. i.e the maxlr, minlr, max,r,

minmr, Clr, and Cmr can be learned by an policy gradient reinforcement learning approach.
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(a) Cross Entropy loss in validation set for four different architectures

(b) Dice index in validation set for four different architectures

Figure 7.4: Validation loss and dice index for four different architectures with ADAM and CLMR
optimizers
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(a) Cross Entropy loss in validation set for DenseNet_2 architecture

(b) Dice index in validation set for UNet architecture

Figure 7.5: Validation loss and dice index for DenseNet_2 architecture with different values of Clr
and Cmr
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(a) Cross Entropy loss in validation set for DenseNet_2 architecture

(b) Dice index in validation set for UNet architecture

Figure 7.6: Validation loss and dice index for UNet architecture with different values of Clr and
Cmr
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Figure 7.7: Box plots for DI in test data set for RV, Myo., LV and also average of them (Ave.).
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Figure 7.8: Qualitative results for ground-truth and different methods for same subject in end-
diastole from Apex to Base for four slices (from right to left). Green, yellow, and brown contours
are showing RV, myo, and LV, respectively.
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Figure 7.9: Qualitative results for ground-truth and different methods for same subject in end-
systole from Apex to Base for four slices (from right to left). Green, yellow, and brown contours
are showing RV, myo, and LV, respectively.

75



www.manaraa.com

CHAPTER 8: CONCLUSION AND FUTURE WORKS

In this chapter, the remarks of dissertation are concluded and summarized. Also, suggestions for

future works based on the proposed methods in the dissertation are given.

8.1 Conclusion

In this dissertation, we proposed methods to optimize segmentation deep learning algorithms for

medical image segmentation in different aspects such as dimensionality of input images, different

modalities and multi-organs, hyperparameters of CNN architectures, using noisy and inexpert la-

bels in training, and designing efficient and accurate optimizers for medical images analysis. In

Chapter 3, we proposed a method to handle dimensionality problem in medical images. Since

the images in medical images are 3D or 4D, then the CNN methods demands a large number of

parameters with huge amount of computational resources to be trained. In Chapter 3, this problem

were solved by proposing a 2.5D method following by adaptive fusion. Three 2D CNN networks

were trained for each planes of image (axial, sagittal, and coronal) and then in order to utilize the

information from each plane in outputs of these CNNs, an adaptive fusion method were introduced

and applied. So, the proposed algorithm demanded same amount of parameters and computational

resources as 2D networks, while it used information of 3D image to do binary segmentation. Fur-

thermore, in order to train faster (since there are three networks to be trained) a new loss function

based on Z-loss were introduced and used. The proposed approach applied to anatomical model-

ing of LA and PPVs from MRI images due to their importance in diagnosis and predicting several

cardiac diseases. In Chapter 4, we extended the proposed method in previous chapter to make it

applicable to do multi-class segmentation in multi-modality medical images. Segmenting different

organs in different image modalities in clinic with a generic method is challenging due to high
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variations among the organs and also numerous modalities in medical images. The proposed ap-

proach applied to CT and MRI image to segment seven different substructures from cardiac. In

the Chapter 5, we proposed a computational efficient method to address the problem of finding

the optimum CNN architecture for medical image segmentation task. Current methods to find

the optimum architecture for a given task are computationally expensive and need huge number

of resources, however our proposed methods can automatically find optimum hyperparameters of

network with reasonable and limited computational resources. We applied our method to segment

cardiac substructures from cine-MRI (4D MRI) images which can be useful in measuring ejection

fraction in order to diagnosis or predicting heart stroke. In Chapter 6, a new approach proposed

based on the learning segmentation from geodesic maps obtained from prior information form a

semi auto-encoder network. For first time in the literature, the noisy and inexpert labels were

used to train the segmentor as well as to obtain prior information. The information obtained from

geodesic prior were integrated into the loss function of weakly supervised segmentation network

to guide it in the absence of accurate labels. Finally, in Chapter 7, we investigated the effect of

different optimization methods, such as adaptive and cyclic optimizers, in the performance of deep

networks in medical image segmentation. We introduced a new cyclic learning /momentum rate

optimizer, called CLMR, which computationally is cheaper than adaptive optimizer while it is gen-

eralizing better in comparison with them. Both learning rate and momentum rate are changing in

cyclic manner in new proposed optimizer. However new optimizer is not converging as fast as

adaptive optimizers, but at the end it outperformed them on both validation and test data sets.

8.2 Future Work

In Chapter 3 and 4, we introduced an adaptive fusion method which assigned weights to output of

each CNNs according to segmented object. The segmented objects were obtained after applying
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the softmax function in the last layer of the proposed network. So, to explore whether the informa-

tion loss due to class normalization in this step is significant, further research should be undertaken

using information from the layer before the softmax in fusion part and compared with the current

system. In addition, the weights which are assigned to each network can be learned by Multilayer

perceptron network during the training and current calculated weights can bused as initialization.

In Chapter 5, there is no constrain during learning the hyperparameters of network. However, some

constraints such as number of parameters in network can be added to learning process. Also, other

architecture hyperparameters such as skip connections among the layers can be added to initial

policy set to be learned. Another work which can be done in this research is choosing different and

better architecture as a baseline architecture.

In Chapter 6, the semi auto-encoder is first fully trained to map geodesic map to its corresponding

binary map, and then the segmentor started to train. One of the works which can be done is training

whole system in end-to-end manner. i.e both semi auto-encoder and segmentor networks can be

trained simultaneously.
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